AEROBIC BACTERIA ASSOCIATED WITH ENDOMETERITIS OF SLAUGHTERED SHEEP AND GOATS IN KAFR EL-SHEIKH GOVERNORATE

T. H. S. Badier and G. I. Mazyad

Vet. Lab., Animal Health Research Institute

ABSTRACT

This study was done at Kafr El-Sheikh Governorate on uteri of both slaughtered sheep (100) and goats (100) in the abattoir during December 2008 and January 2009 and post-mortem was operated to examine these obtained uteri, those divided into two groups (non purulent and purulent uteri) the uterine swabs were collected from (40) sheep and (40) goats and cultivation on specific and selective media to isolate the aerobic bacterial microorganisms associated with endometritis of these animals. The incidence of non-purulent and purulent uteri were 85% and 15% in sheep and 80% an 20% in goats, respectively.

Also, this study illustrated that the incidence of bacterial isolates sheep (40) and goats (40) which had non purulent and purulent uteri was 62.5%, 37.5% and, 50% and 50%, respectively.

The incidence of bacterial strains was 50% (Staphilococcus aureus), 12.5% (Streptococcus viridans), 2.5 (Campylobacter fetus), 50% (Escherichia coli), 2.5% (Proteus vulgaris) 5% (Pseudomonas aeruginosa) in sheep, but in goats this incidence was 25% (Staph. aureus), 12.5% (Strept. viridans), 12.5% (Campylobacer fetus), 37.5% (E. coli) and 12.5% (Proteus vulgaris). The rate of the isolated bacterial strains was 22.99% (Staph. aureus), 7.46% (Strept. viridans), 14.93% (Campylobacter fetus), 22.39% (E. coli), 11.40% (Proteus vulgaris) and 2.99% (Pseudomonas aeruginosa) in non purulent uteri sheep while in purulent uteri of sheep this rate was 7.46% (Staph. aureus), 0% (Strept. viridans) 0% (Campylobcter fetus), 7.46% (E. coli), 2.99% (Proteus vulgaris) and 0% (Ps. aeruginosa). Also, this rate in goats was 20% (Staph. aureus), 12.5% (Strept. viridans), 12.5% (Campylobacter fetus), 25% (E. coli), 10% (Proteus vulgaris), and 0% (Ps. aeruginosa) in non purulent uteri while it was 5% (Staph. aureus) 0% (Strept. viridans), 0% [Campylobacter fetus), 12.5 (E. coli), 2.5% (Proteus vulgaris) and 0% (Ps. aeruginosa).

This study revealed that all isolates of Staph. aureus and Strept. viridans were more sensitive to erythromycin, chloromphenicol, gentamycin, streptomycin, neomycin, oxytetracyclin and enerofloxacin, but campylobacter fetus isolates were sensitive to gentamycin, streptomycin and enerofloxacin, while, isolates of E. coli and Proteus vulgaris were only sensitive to gentamycin and enrofloxacin. On the other hand, the isolates of Ps. aeruginosa were only sensitive to enerofloaxcain and resistant to remained used antibiotics in this work.

INTRODUCTION

The small ruminant animals (sheep and goats) are considered as a source of protein and milk for human consumption and wool production used by human.

Ewes and goats should have complete normal genital organs useful for production of off springs (*Blood and Handerson, 1974*).

Kafrelsheikh Vet. Med. J. Vol. 7 No. 1 (2009)

Aerobic Bacteria Associated With Endometeritis Of ...

Bacterial infections of sheep and goats uteri cause to endometritis with several types of inflammation and lead to non pregnant and dead fetus (*Blood and Handreson, 1974, Martin, and Aiken, 2000 and Donkin and Boyazogiu, 2004*).

The bacterial microorganisms are *Staphylococcus* spp., *Streptococcus* spp. *Corynebacterium* spp., *E. coli*, *Pseudomonas aureuginosa*, *Proteus* spp., *Campylobacter fetus*, Khebsiella and *Enterobacter cloacae* which were reported as bacterial causes of enodmetritis of sheep and goats (*Nizamani et al., 2002 and Sokkar et al., 2007*).

So this study was done to isolate various bacterial agents from uterine swab samples of sheep and goats to be identified, and recorded its incidence and rate.

MATERIAL AND METHODS

This study was carried on uteri of slaughtered sheep (100) and goats (100) in abattoirs in Kafr El-Sheikh governorate during December 2008 and January, 2009.

These uteri were taken as soon as possible on ice box to laboratory under aseptic condition to decide the presence of inflammation and divided into two groups (non purulent, and purulent uteri) as shown in Tables (1, 2, 3).

Then take swab from each uterus under aseptic condition. These samples were cultivated onto specific media (peptone water, Loffler's blood agar, nutrient agar, baired barker, McConeky agar and Citramide agar media) and incubated at 37°C for 24 hours (*Bailley and Scott, 1974*).

Kafrelsheikh Vet. Med. J. Vol. 7 No. 1 (2009)

Morphological character of stained films were examined by microscope (*Cruickshank et al., 1975*).

The obtained bacterial isolates were classified and confirmed by biochemical and serological tests (*Cruickshank et al., 1975 and Bailley and Soctt 1974*).

The agglutination plate test (antiserum was obtained from Vaccine and Serum Research Institute, Abbasia) applied to report *Staphylococcus* spp. and biochemical tests (urease, triple sugar, indole, vogus-prouskaur test) were done (*Baily and Scott, 1974*).

Sensitivity tests for some obtained bacterial strains were applied by using method of antibiograms to clear their sensitivity to gentamycin, streptomycin, chloramphenicol, neomycin, oxytetracyclin, (*Bailey and Scott, 1974 and Ernest et al., 1976*).

Post mortem examination of uteri	Findings observation					
T ost mortem examination of atern	No	%				
Non purulent uterus	85	85				
Purulent uterus	15	15				
Total	100	100				

Table (1): The post mortem examination of ewe's uterus.

Table (2): The post mortem examination of goat's uterus.

Post mortem examination of uteri	Findings observation				
T ost mortem examination of aterr	No	%			
Non purulent uterus	80	80			
Purulent uterus	20	20			
Total	100	100			

Kafrelsheikh Vet. Med. J. Vol. 7 No. 1 (2009)

Aerobic Bacteria Associated With Endometeritis Of ...

Table (3): The post mortem examination of uterus from sheep and goats which used for bacteriological isolation.

Post mortem examination of uterus	Sh	eep	Goat		
i ost mortem examination of ateras	No.	%	No.	%	
Non purulent	25	62.5	20	50	
Purulent	15	37.5	20	50	
Total	40	100	40	100	

RESULTS

Table (4): The incidence of isolated bacterial strains from sheep (40).

Post mortem			Bacterial isolates										
le	Staph. aureus		Strept. viridans		Camylobacter fetus		E. coli		Proteus vulgaris		Ps. aurrusnosa		
01 40011		No.	%	No.	%	No.	%	No.	%	No.	%	No.	%
Non purulent	25	15	37.5	5	12.5	10	25	15	37.5	8	20	2	5
Purulent	15	5	12.5	0	0	0	0	5	12.5	2	5	0	0
Total	40	20	50	5	12.5	10	25	20	50	10	2.5	2	5

This Table (4) illustrate that the number and incidence of isolated bacterial strains from non purulent uteri of sheep was 15 (37.5%) *Staph. aureus*, 5 (12.5%) *Strept. viridans*, 10 (25%) *Campylobacter fetus*, 15 (37.5%) *E. coli*, 8 (20%) *Proteus vulgaris* and 2 (5%) *Ps. aeruginosa*, while, they were 5 (12.5%) *Staph. aureus*, 0 (0%) *Strept. viridans*, 0 (0%) *Campylobacter fetus*, 5 (12.5%) *E. coli*, 2 (5%) *Proteus vulgaris* and 0 (%) *Ps. aeruginosa* which isolated from purulent uteri of sheep.

Table (5): The rate of isolated bacterial strains from uterus of sheep.

Microorganisms	Te	otal	Non Puru	lent uterus	Purulent uterus		
When our guillishis	No.	%	No.	%	No.	%	
Staph. aureus	20	29.85	15	22.39	5	7.46	
Strept. viridans	5	7.46	5	7.46	0	0	
Campylobacter fetus	10	14.93	10	14.93	0	0	
E. coli	20	29.85	15	22.39	5	7.46	
Proteus vulgaris	10	14.93	8	11.40	2	2.99	
Ps. aeruginosa	2	2.98	2	2.99	0	0	
Total	67	100	55	82.09	12	17.91	

Kafrelsheikh Vet. Med. J. Vol. 7 No. 1 (2009)

Table (5) revealed that the number and rate of isolated bacterial strains 15 (22.39%) *Staph. aureus*, 5 (7.46%) (*Strept. viridans*, 10 (14.93%) *Campylobacter fetus*, 15 (22.39%), *E. coli*, 8 (11.40%) *Proteus vulgaris*, and 2 (2.99%), *Ps. aeruginosa* from non Purulent uteri of sheep, while, they 5 (7.46%) *Staph. aureus*, 0(0%) *Strept. viridans*, 0 (0%) (*Campylobacter fetus*), 5 (7.46%), *E. coli*, 2 (2.99%) *Proteus vulgaris* and 0 (0%) *Ps. aeruginosa* from purulent uteri of sheep.

Post mortem examination of uteri			Bacterial isolates											
	Total	Staph. aureus		Strept. viridans		Campylobac ter fetus		E. coli		Proteus vulgaris		Ps. Aeruginosa		
		No.	%	No.	%	No.	%	No.	%	No.	%	No.	%	
Non purulent	32	8	20	5	12.5	5	12.5	10	25	4	10	0	0	
Purulent	8	2	5	0	0	0	0	5	12.5	1	2.5	0	0	
Total	40	10	25	5	12.5	5	12.5	15	37.5	5	12.5	0	0	

Table (6): The incidence of isolated bacterial strains from uteri of goats (40).

Table (6) cleared that the number and incidence of isolated bacterial strains from uteri of goats was 8 (20%) *Staph. aureus*, 5 (12.5%) *Strept. viridans*, 5 (12.5%) *Campylobacter fetus*, 10 (25%), *E. coli*, 4 (10%) *Proteus vulgaris* and 0 (0%) *Ps. aeruginosa* (non purulent uteri) while, in Purulent uteri, they were 2 (5%) *Staph. aureusi*, 0 (0%) *Strept. viridans*, 0 (0%) *Campylobacter fetus*, 5 (12.5%) *E. coli*, 1 (21.5%) *Proteus vulgaris* and 0 (0%) *Ps. aeruginosa*.

Aerobic Bacteria Associated With Endometeritis Of ...

Microorganisms	То	tal	Non Puru	lent uterus	Purulent uterus		
When our gamisms	No.	%	No.	%	No.	%	
Staph. aureus	10	25.00	8	20	2	5	
Strept. viridans	5	12.50	5	12.5	0	0	
Campylobacter fetus	5	12.50	5	12.5	0	0	
E. coli	15	37.50	10	25	5	12.5	
Proteus vulgaris	5	12.50	4	10	1	2.5	
Ps. aeruginosa	0	0.00	0	0	0	0	
Total	40	100	32	80	8	20	

Table (7): The rate of isolated bacterial strains from uteri of goat.

Table (7) revealed that the number and rate of the isolated bacterial strains from uterus goat (non purulent and purulent uteri) was 8 (20%) and 2 (5%) *Staph. aureus*, 5 (12.5%) and 0 (0%) *Strept. viridans*, 5 (12.5%) and 0 (0%) *Campylobacter fetus*, 10 (25%) and 5 (12.5%) *E. coli*, 4 (10%) and 1 (2.5%) *Proteus vulgaris*, and *Ps. aeruginosa* strains were not isolated respectively.

 Table (8):
 Results of sensitivity test.

Microorganisms	Erythromycine	Chloromphenicol	Gentamycin	Streptomycine	Neomycine	Oxytetracycline	Enerofloxacine
Staph. aureus	+	+	+	+	+	+	+
Strept. viridans	+	+	+	+	+	+	+
Campylobacter fetus	-	-	+	+	-	-	+
E. coli	-	-	+	-	-	-	+
Proteus vulgaris	-	-	+	-	-	-	+
Ps. aeruginosa	-	-	-	-	-	-	+

+ Sensitive

- = Resistant

Kafrelsheikh Vet. Med. J. Vol. 7 No. 1 (2009)

Table (8) revealed that *Staph. aureus* and *Strept. viridans* were sensitive to chloramphenicol, neomycine, oxytetraycline, streptomycin, erythromycine, and enerofloxacine. *Proteus vulgaris* and *E. coli* were sensitive to gentamycin and enerofloxacine, *Campylobacter fetus* were sensitive to streptomycine, gentamycine and enerofloxacincine while, *Ps. aeruginosa* were sensitive to enerofloxacine only.

DISCUSSION

This study revealed that the post mortem examination of uteri from slaughtered 100 sheep and 100 goats in an abattoir appeared 85% and 15% and 80% and 20% non purulent and purulent uteri, respectively, this incidence of purulent uteri is due to non correct treatment of these animals, this agree with *Mahajn and Kotoch*(1997), *Katoch et al.* (1997) and Sokkar et al. (1980).

This study showed that the incidence of *Staph. aureus* (37.5%), *Strept. viridans* (12.5%), *Campylobacter fetus* (2.5%), *E. coli* (37.5%), *Proteus vulgaris* (20%) and *Ps. aeruginosa* (5%), and *Staph. aureus* (12.5%), *E. coli* (12.5%), *Proteus vulgaris* (5%) in with non purullent and purulent uteri of sheep, respectively. This finding were agreed the results which reported by Sokkar (1980), while, in goats the incidence of *Staph. aureus* (25%), *Strept. viridans* (12.5%), *Campylobacter fetus* (12.5%), *E. coli* (37.5%) and *Proteus vulgaris* (12.5%). These obtained results agreed with *Sokkar et al.* (2007).

This study revealed that the rate of isolated bacterial microorganism was 22.39% (*Staph. aureus*), 7.46% (*Strept. viridans*), 14.93% (*Campylobacter fetus*), 22.39% (*E. coli*), 11.40% (*Proteus vulgaris*) and 2.99% (*Ps. aeruginosa*) and (7.46% (*Staph. aureus*), 7.46% (*E. coli* and 2.99% (*Proteus vuglaris*) in non purulent and purulent uteri of sheep. While, in goats, it was 20% (*Staph. aureus*), 12.5% (*Strept. virdans*),

Kafrelsheikh Vet. Med. J. Vol. 7 No. 1 (2009)

12.5% (*Campylobacter fetus*) 25% (*E. coli*) and 10% (*Proteus vulgaris*), and 5% (*Staph. aureus*), 1.5% (*E. coli*) and 2.5% (*Proteus vulgaris*) from non purulent and purulent uteri, respectively, these obtained results were smaller with other results which reported by *Nizamani et al.* (2002) and *Azew et al.* (2003).

This study investigated that all *Staph. aureus* and *Strept. viridans* strains were sensitive to Erythromycin, chloramphenicol, gentamycin, streptomycin, neomycin, oxytetracycline and enerofloaxcin, while, campylobacter fetus strains were sensitive only to gentamycin, streptomycin and enerofloxacin, *E. coli* strains and *Proteus vulgaris* strains were only sensitive to gentamycin and enerofloxacin, while, *Pseudomonas aeruginosa* strain were only sensitive to enerofloxacine. These results of sensitivity test of used antibiotics except enerofloxacine agreed with the results obtained by *Shataiov et al.* (1985).

Most isolated bacterial microorganisms in this study were resistant to most of used antibiogram due to plasmid and extrachromosal resistance factor, this point cleared by *Bailley and Scott (1974)*.

REFERENCES

- Azew, O.; Al-Baual, S.M.T. and Zenad, M.M. (2003). Bacteriological and histopathological associated with dystocia in Awassi ewes. Iraqi Journal of Veterinary Sciences 17(1): 154-191.
- *Bailey, W.R. and Scott, E.G. (1974).* Diagnostic microbiology the 4th edition, The C.V. Mosoby Company.
- *Blood, D.C. and Henderson, JA. (1974).* Veterinary medicine 4th edition, the English Language Book, Society and Ballere Tindall.
- *Cruickshank*, *R.*; *Dugina*, *J.P.*; *Masmino*, *B.P. and Swain*, *R.H.A.* (1975). Medical microbiology. The practice of medical microbiology. 12th Ed., Vol.11.Churchill Living Stone Edinburgh, London and New York.

Kafrelsheikh Vet. Med. J. Vol. 7 No. 1 (2009)

- *Donkin, E.F. and Boyazogiu, P.A. (2004).* Diseases and mortality of adult goats in a south African milk goats herd. South African Journal of Animal Science, 39(1): 254-257.
- *Ernest Jawetz, Joseph, L. Melnick and Edward A. Adelberg (1976).* Review of medical microbiology. 12th. edition, Lance Medical Publications, Losalton, California.
- *Katoch, R.C.; Mandeep-Shanna; Batta M.K.; Joshi, V.B.; Asrani, R.K.; Nagal, K.B.(1997).* Investigations on enodmeteritis among sheep and goats. Indian-Veterinary-Journal, 74(6): 365-367.
- *Mahajan, A.K. and Katoch, R.C. (1997).* Aerobic microbial flora association with enodmeteritis in sheep and goats. Indian Journal of Animal Sciences, 87(4): 290-291.
- *Martin, W.B. and Aiken, I.D. (2000).* Diseases of sheep 3 edition, the Black well Science.
- *Nizamani, A.W.; Khan, T.S.; Siddinui, L.A.; Rind, R.; Laghan, H.H.* (2002). Studies of bacteria flora of uteri of slaughtered sheep. Journal of Animal and Veterinary Advances 1(2): 89-91.
- Shataiov, V.F.; Neknaev, E.E.; Knrapkovaskaya, L.P. (1985). Drug sensitivity of bacteria from the genital system of animals. Veterinariya-Moscow, (9): 46-47.
- Sokkar, S.M.; Ahmed, Y.F.; Desouky, H.M. and Soror, A.M.N. (2007). Pathological studies on sheep endometritis. Vet. Med. J. Giza, 55 (1): 131-144.
- *Sokkar, S.M.; Kubba, M.A. and Augaloy, E. (1980).* Studies on natural and experimental endometritis in ewes. Veterinary Pathology, 17(8): 893-898.

Kafrelsheikh Vet. Med. J. Vol. 7 No. 1 (2009)

البكتيريا الهوائية المصاحبة للاتهابات الرحمية للأغنام والماعز المذبوحة بمحافظة كفرالشيخ

ظلعت حامد شعیشع بدیر – جمال الدین ابراهیم مزید

معمل بيطرى كفرالشيخ _ معهد بحوث صحة الحيوان _ الدقى

أجريت هذه الدراسة بمحافظة كفر الشيخ على إناث الماعز والأغنام (100 رأس غنم و 100 رأس من الماعز) وهذه الحيوانات ذبحت داخل السلخانة فى الفترة من أول ديسمبر 2008 حتى نهاية يناير 2009 وتم فحص أرحام هذه الحيوانات تم تقسيمهم الى مجموعتين ارحام ليس بها صديد بنسبة 28% ، 80% وأرحام بها صديد بنسبة 15% و 20% بالنسبة للغنم و الماعز على التوالى وتم أخذ عينات من عدد 40 غنم و عدد 40 ماعز و التى تشمل العينات المأخوذة من أرحام الغنم و الماعز الماعز التى يتم التي الماعز على التوالى وتم الماية في الترحام بها صديد بنسبة 25% ، 80% ما يوالي و التى تشمل العينات المأخوذة من أرحام الغنم و الماعز الماعز الماعز الماعز الماعز و التى تشمل العينات المأخوذة من أرحام الغنم و الماعز الماعز الماعز الماعز و التى تشمل العينات المأخوذة من أرحام الغنم و الماعز التى بنسبة و الماعز و التى تشمل العينات المأخوذة من أرحام الغنم و الماعز الماعز العينات المأخوذة من أرحام الغنم و الماعز الماعز الماعز الماعز الماعز الماع و التى تشمل العينات المأخوذة من أرحام الغنم و الماعز و التى تشمل العينات المأخوذة من أرحام الغنم و الماعز الماعز الماعز و التى تشمل العينات المأخوذة من أرحام الغنم والماعز أخذ عينات من عدد 40 غنم و عدد 200 ماعز و التى تشمل العينات المأخوذة من أرحام الماعز والتى بها صديد وأرحام بها صديد على أخذ عينات من عدد وكانت السبة للماعز و التى تشمل العينات المأخوذة من أرحام العنم والماعز التى بها صديد وكانت العينه 50% ، 50% من أرحام بها صديد على التوالى بالنسبة للماعز كانت العينة 50% ، 50% من أرحام الماعز ليس بها صديد والي مايز و التى عدي والي مايز التى العينا التوالى مايز التى العينا التوالى ماليز المايز المايز المايز كانت العينة 50% ، 50% من أرحام الماعز اليس بها صديد وأرحام الماعز ليس بها صديد وأرحام الماعز ولتى مايز المايز والي الماعز المايز المايز المايز والي المايز المايز المايز المايز المايز المايز والي مايز المايز المايز المايز والي مايز المايز المايز المايز المايز والي مايز والي مايز المايز والي مايز والي ما

نسبة العترات البكتيرية مقرونة لعدد 40 رأس من أنثى الغنم 50% ميكروب عنقودى ذهبى، 12.5 % ميكروب سبحى فيريدانس، 12.5% ميكروب الكامبيلوباكتر فيتس و 50% ميكروب قولونى ة 25% برونيس فيرجالس و 5% ميكروب السيدوموناس اريجنوزا بالنسبة للغنم ولكن النسبة كانت فى الماعز هى 25% لميكروب العنقودى الذهبى و 12.5% ميكروب استربتوكوكس فيردانس و 12% كلميلوبكتر فيتس و 37.5% ميكروب قولونى و 12.5 ميكروب البرونين فولجارس.

نسبة عزل العترات البكتيرية كانت 22.99% (العنقودى الذهبى) و 7.46% (استربتوكوكس فيردانس) و 14.93% (كامبيلوبكتر فيتس) و 22.39% (القولونى الميكروب) و 11.40% (بروتيس فولجارس) ة 2.99% (سيدوموناس اريجنوزا) بالنسبة للعينات المأخوذة من أرحام الأغنام التى لا يوجد بها صديد بينما كانت النسبة لهذه الميكروبات المعزولة من العينات المأخوذة من أرحام الأغنام التى بها صديد كالتالى: 7.46% (عنقودى ذهبى) ولم يتمكن من عزل ميكروب السبحى فيردانس وميكروب كامبيلوبكر فتيس ولم يعزل ميكروب السيدوموناس اريجنوزا وكانت النسبة للميكروب القولونى (7.46%) وميكروب البروتيس فولجارس (2.99%). أيضا كانت نسبة عزل الميكروبات البكتيرية المعزولة من أرحام الماعز هى كالتالى:

T. H. S. Badier & G., I. Mazyad

أ- النسبة المعزولة من أرحام الماعز التي ليس بها صديد هي 20% (العنقودي الذهبي) و 12.5% (السبحي فريدانس) و 12.5% (كامبيولوبكتر فيتس) و 25% (القولوني) و 10% (بروتيس فولجارس) ولم يمكن عزل ميكروب السيدوموناس اريجنوزا.

ب- النسبة المعزولة من أرحام الماعز والتي بها صديد وهي 5% (العنقودي الذهبي) و 12.5%
 (القولوني) و 2.5% (بروتيس فولجارس) ولم نتمكن من عزل ميكروب السيدموناس اريجنوزا والكامبيلوبكتر فتيس والسبحي فيردانس.

أضافت هذه الدراس أن كل من المعزولات الأتي: الميكروب العنقودى الذهبى والسبحى فريدانس كانت حساسة لكل من مضاد الإرثرومايسين وكلور امفينكول وجنتاميسين واستربتومايسين ونيومايسين وأوكسى تتراسيكلين والانروفلوكساسين. بينما المعزولات من الميكروب كامبيلوكتر فيتس كانت حساسة لكل من وجنتاميسين واستربتومايسين وانروفلوكساسين ولكن الميكروب القولونى والبروتيس فولدجارس كانت حساسة فقط لمضاد جنتامايسين والأنروفلوكساسين وأوضحت هذه الدراسة أيضا أن المعزول من ميكروب السيدموناس اريجنوزا كانت حساسة فقط لمضاد الانروفلوكساسين ومقاوم لبقية المضادات المستخدمة.