BACTERIOLOGICAL STUDIES ON HAEMOPHILUS PARAGALLINARUM IN CHICKEN IN DAKAHLLIA GOVERNORATE

Maha A E Awad Alla*, Yousef A Ahmed** and Yasmin A Abd Rabouh**

Diagnostic Lab .Vet. Clinic *, Department of Microbiology **

Faculty Vet. Med. Zagazig University, Zagazig, Egypt. Diagnostic Lab in Mansoura***.

ABSTRACT

One hundred & eighty samples collected from commercial layers, broiler, breeders and native breeds farms to detect the incidence of infectious coryza in Dakahlia Governorate. 12 isolates of Haemophilus paragallinarum (HPG) were isolated, these isolates could be identified morphologically, biochemically and serologically into 8 isolates belonged to serotype A and the other 4 isolates belonged to serotype C. The antibiogram sensitivity test proved that the enrofloxacin was the most effective antibiotic followed by ampicillin, ciprofloxacin, amoxicillin, and the lowest one was pencillin.

INTRODUCTION

Infectious coryza is an acute upper respiratory disease of chickens characterized by sneezing, nasal discharge, facial swelling, laccration, sinusitis, decrease food and water consumption and retarded growth in broilers and reduce egg production in layers flocks from 10 to 40% leading to increase number of culls particularly in multiages farms (Blackall, 1999).
Early workers identified the causative agent of infectious coryza as Haemophilus gallinarum, an organism that required both X and V factors for growth, however all isolates of the organisms producing agent required only V factor and named Haemophilus paragallinarum (HPG) (Chen et al., 1996 and Bragg et al., 1997).

HPG is delicate and extremely fastidious microorganism not easy to grow in pure culture in vitro requiring specific growth condition for isolation (Chen et al., 1996 and Bragg et al., 2004). HPG is Gram-negative, non motile, bipolar bacterium, coccobacilli or short rods, 1-3μm in length and 0.4-0.5 μm in width. The capsule may be present in a virulent strain (Hinz 1973, Sawata et al., 1981 and Richard and Gretchen, 2004 and Garcia et al, 2004).

MATERIAL AND METHODS

Materials:

Samples:

One hundred & eighty alive and freshly dead chickens at age of 18 to 180 days were collected from layers and broilers farms scattered all over the Dakahlia Governorate. These birds suffering from sneezing, nasal discharge, lacrimation, facial swelling and anorexia.

Media:

a- Brain heart infusion broth and agar (Blackall 1989, and Horner et al 1992).

b- Blood agar.

c- Chocolate blood agar (Koneman et al., 1998).

d- Tryptose blood agar (Rimler, 1979).
e- MacConkey agar (*Cruickshank et al., 1975*).

f- Sugar media.

g- Urea, Citrate, Nitrate media.

h- Phosphate buffer salin, used for antigen preparation.

i- Nicotineamide adenine dinucleotide (NAD). (Sigma).

j- Merthiolate 0.01% were used for antigen preservation.

Standared strains:

a- HPG 0083, 0222 and Modesto strains were used for antigens preparation. These strains were kindly provided from Dr. R. Rimler College of Vet. Med. Poultry Disease Research Center, Department of Avian Medicine, University of Georgia, USA. They were stored as described by *Iritani et al.*, (1977).

b- Staphylococcus epidermidis strain were kindly provided from Bacteriology, Mycology and Immunology Department of Faculty of Vet, Med, Zagazig University, & was used as feeder culture to HPG & to study the satellitism phenomena.

Stains:

b- Crystal violet 0.002% for antigen staining (*Iritani et al.*, 1977).

Embryonated chicken eggs: used for preservation & propagation of suspected *Haemophilus strains*.

Antimicrobial discs: used for antibiogram sensitivity test.
Methods:

a- **Bacteriological swabs**: infraorbital sinuses and tracheal swabs were taken from the collected chickens under aseptic conditions. Then cultivated onto blood agar, tryptose agar, chocolate blood agar and brain heart infusion agar plates with the feeder culture of Staphylococcus epidermidis as a source of NAD for HPG isolation. The plates were incubated at 37°C for 24-48 hr in the presence of 10% CO₂(candel jar) MacConkey’s agar media used for other bacterial isolation. The growing colonies were examined for their shape, size and hemolysis onto blood agar.

b- **Biochemical identification**: Investigated according to Cruickshank *et al.*, (1975) and Terezol *et al.*, (1993): Catalase, indole, nitrate reduction test, urease test, citrate test and sugar fermentation test were applied.

Serological identification: Antigen preparation for the suspected colonies and standard strains according to Rimler *et al.*, (1977).

Antisera preparation according to Page (1962).

Slide agglutination test according to Irritani *et al.*, (1977).

Antibiogram sensitivity pattern of HPG carried out according to Rimler (1979).

RESULTS AND DISCUSSION

The results of bacteriological isolation in broiler breeders and native breeds were shown in table (1) total of 118 samples yield only 5 strains of HPG with a total incidence of 4.23%, E. Coli 42 isolates in incidence of 36%, Staph 50 isolates in incidence of 42.37% and Pseudomonas 24 isolates in incidence of 20.39%.
Table (1): Incidence of HPG in broiler breeders and native breeds chickens in Dakahlia Governorate.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Breed</th>
<th>Age/day</th>
<th>No.of samples</th>
<th>Bacteriological isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HPG</td>
</tr>
<tr>
<td>Belkas</td>
<td>Hubbard</td>
<td>23</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>Talkha</td>
<td>Native</td>
<td>33</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Basandila</td>
<td>Hubbard</td>
<td>30</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>Batra</td>
<td>Cubb</td>
<td>40</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>Sherbin</td>
<td>Native</td>
<td>30</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>El-Tawila</td>
<td>Native</td>
<td>50</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>El-Maesara</td>
<td>Hubbard</td>
<td>31</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>Dekernes</td>
<td>Cubb</td>
<td>25</td>
<td>21</td>
<td>-</td>
</tr>
</tbody>
</table>

- Total | | 118 | | 5 | 4.23% | 42 | 36% |

The results of bacteriological isolation in layers were shown in table (2) total 62 samples yield only 7 isolates of HPG in incidence of 11.3%, 20 isolates of E.Coli in incidence of 32.26%, 25 isolates of Staph in incidence of 40.32% and 11 isolates of Pseudomonas in incidence of 17.74%.

Table (2): Incidence of HPG in layer chicken in Dakahlia Governorate.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Age/day</th>
<th>No.of samples</th>
<th>Bacteriological isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>HPG</td>
</tr>
<tr>
<td>Belkas</td>
<td>150</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>Talkha</td>
<td>140</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Sherbin</td>
<td>160</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>El-Tawila</td>
<td>180</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>El-Maesara</td>
<td>165</td>
<td>14</td>
<td>1</td>
</tr>
</tbody>
</table>

- Total | | 62 | 7 | 11.3% | 20 | 32.26% |

Total of 180 samples revealed, 12 isolates HPG, 62 E.coli, 75 Staph, 35 Pseudomonas. These results were supported by **Awad Alla (1989)** who identified 15 isolates of HPG (incidence 5.8%), in addition to 33 isolates of E.coli, 5 isolates of Salmonella, 9 isolates of Pseudomonas, one isolate of Arizona and 14 isolates of Staph from 256 samples in Sharkia Governorate. While **Zaki (1983)** isolated 11 isolates of HPG from 190 examined samples at Giza Governorate with incidence 5.78%.
The suspected colonies were tiny dew drops like colonies up to 0.3-0.5 mm in diameter when incubated for 24-48 hours in the presence of 10% CO$_2$ and feeder culture. They were non hemolytic on blood agar and didn’t grow onto MacConkey’s agar media and when grow onto chocolate agar with presence of feeder culture (Staph. Epidermidis) the growth was abundant near the feeder culture. These colonies were Gram negative, coccobacilli or short rods, bipolar bacterium 1-3um in length and 0.4-0.8 um in width and non spore forming bacteria these results agree with Hinz (1973), Sawata et al (1981), Awadalla (1989), and Richard and Gretchen, 2004 and Garcia et al., (2004).

The biochemical identification revealed that Catalase, Indol, Urease and Citrate tests were negative, while Nitrate reduction was positive. Concerning to sugar fermentation maltose, mannitol were positive, galactose was negative, meanwhile lactose and sucrose showed variable results, 5 isolates showed positive reaction and 7 isolates showed negative reaction. These results supported with the results recorded by Kume et al., (1978), Narita et al., (1978), Sawata et al., (1979), Rimler (1979), Horner et al., (1992), Terzolo et al., (1993), Blackall et al.,(1994) and (2005).

The results of serological identification by using rapid slide agglutination test showed formation of definite clumps within 1-2 minutes, 8 out of these isolates belonged to serotype A(0083),while the other 4 isolates belonged to serotype C (Modesto). These results were similar to Awadalla (1989) who isolated15 isolates of HPG collected from different localites at Sharkia Governorate and identified 10 of them as serotype A and 5 as serovare C. While Zaki (1983) identifed 11 isolates of HPG from 190 examined samples at Giza Governorate as serovare 1. Meanwhile
Shahata et al (1988) who identified his isolates from upper Egypt as serotype 2 and Aly and Mousa (2000) who identified 18 isolates of HPG also in upper Egypt as 8 isolates belonged to serotype A, 4 isolates belonged to serotype B and 6 isolates belonged to serotype C.

Regarding to the antibiogram sensitivity pattern of HPG the results were shown in table (3).

Table (3): Antibiotic sensitivity test of 12 isolates of HPG :-

<table>
<thead>
<tr>
<th>Chemotherapeutic</th>
<th>Symbol and concentration</th>
<th>No.of sensitive isolates</th>
<th>% of activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrofloxacin</td>
<td>AVT(10µg)</td>
<td>11</td>
<td>91.66</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>AMP(10µg)</td>
<td>9</td>
<td>75</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>CIP(5µg)</td>
<td>9</td>
<td>75</td>
</tr>
<tr>
<td>Amoxycillin</td>
<td>AML(10µg)</td>
<td>9</td>
<td>75</td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>NOR(10µg)</td>
<td>8</td>
<td>66.66</td>
</tr>
<tr>
<td>Kitasamycin</td>
<td>KT(70µg)</td>
<td>7</td>
<td>58.33</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>CN(10µg)</td>
<td>5</td>
<td>41.66</td>
</tr>
<tr>
<td>Sulfamethoxazole</td>
<td>SXT(25µg)</td>
<td>5</td>
<td>41.66</td>
</tr>
<tr>
<td>Erythomycin</td>
<td>E(15µg)</td>
<td>4</td>
<td>33.3</td>
</tr>
<tr>
<td>Neomycin</td>
<td>N(30µg)</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>S(10µg)</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>Pencillin G</td>
<td>P(10I.U)</td>
<td>2</td>
<td>16.66</td>
</tr>
</tbody>
</table>

These results were nearly agreed with Horner et al.(1992) who recorded that enrofloxacin and ampicillin were highly potent antibiotic with an activity percentage of 100% for each while sensitivity to pencillin, neomycin and streptomycin gave variable percentage of activity. In the
same time Peornomo et al., (2000) indicated that 11 isolates from 18 isolates were resistant to erythromycin and streptomycin, 10 isolates were resistant to neomycin, 3 isolates were resistant to sulfamethoxazole trimethoprim but only one isolate was resistant to ampicillin. On the other hand, Banani et al., (2007) proved that all isolates were sensitive to ciprofloxacin with an activity percentage of 100%, 3 isolates were sensitive to enrofloxacin and streptomycin with an activity percentage of 75% for each other, 2 isolates were sensitive to ampicillin with an activity percentage of 50% and one isolate was sensitive to gentamycin and amoxicillin with an activity percentage 25% for each of them, while all isolates were completely resistant to penicillin. The obtained results were contradicted with Muhammad et al., (1998) who indicated that gentamycin was the most effective antibiotic against HPG isolates.

Our results were supported to some extent with (Rimler, 1979; Blackall, 1988 and Zaini et al, 1991) who found that, all strains were sensitive to ampicillin, gentamycin, erythromycin, chloramphenicol, kanamycin, tetracycline. Also Soriano et al, (2001) repotted that 96.8% of the studied microorganisms were sensitive to enrofloxacin and variable susceptibility to gentamycin, amoxicillin, trimethoprim, oxtetacycline and phosphomicin. Blackall et al, (1990) suggested that resistance of H. paragallinarum serotypes to streptomycin still predominant and this confirms our results.

We can concluded that HPG infection has economic significance in broilers as well as in layers. The most pathogenic serotypes are A and C .The most effective antibiotic are enrofloxacin followed by ampicillin, amoxicillin and ciprofloxacin.
REFERENCES

دراسات بكتيريوLOGية على ميكروب النيهوموفلس باراجاليينرم في الدجاج بمحافظة الدقهلية

مها عوض الله السيد ، "يوسف عبدالجليل ، "ؤسس عبدالمعطي عبديه

مستشفى كلية الطب البيطري (دواجن) - جامعة الزقازيق

قسم الميكروبولوجي - كلية الطب البيطري - جامعة الزقازيق

عمل المنصورة

قد تم تجميع 180 عينه من دجاج مختلف السلالة من مزارع حكومية وأهليه منتشرة في أماكن مختلفة في محافظة الدقهلية وتم إجراء الفحص لبيكتريوLOGي و الاختبارات البيوكيميائيه والسيروLOGيه وكذلك تم عمل اختبارات الحساسية لهذه العतرات ضد ألوان مختلفة من المضادات الحيوية وكانت النتائج كالاتي تم عزل 12 عتارة من عتارات النيهوموفلس باراجاليينرم وقد تم تصنيفها على ًاساس الفحص المورفولوجي وقابليتها لصبغة الجرام والاختبارات البيوكيميائيه والسيروLOGيه إلى 8 عتارات تتنتمي إلى العتمر وأربع عتارات تتنتمي إلى العتمر وبإجراء اختبار الحساسية بين أن انترولوكسانس هو أكثر المضادات الحيوية فاعليه 91.66 % يليه الأميسلين والسيروفلوكسانس بنسبه 75 % لكل منهم وثبت الاختبار أن أقل المضادات الحيوية تأثيرها هم الاستريتومايسين والنيومايسين والأموكسيلين بنسبه 25% وأخيراَ البنسلين بنسبه 17%.