PREVALENCE OF SARCOCYSTIS SPP. IN SHEEP AND GOATS AND ITS EFFECT ON SOME BLOOD CONSTITUENTS IN SHARKIA PROVINCE

Nasr, S. S. M., Hussen, E. M. * and Soad Mekawy**
Parasitology, Biochemistry* and clinical pathology** departments
Animal Health Research Institute (Zagazig branch)

ABSTRACT

This study was carried out on slaughtered sheep and goats in different slaughter houses in Sharkia Province to determine the prevalence of ovine and caprine Sarcocystis infection and effect on some biochemical clinical pathological parameters.

Parasitological examination of faecal samples revealed presence of eggs of internal parasites in 25(41.67%) lambs (less 9 month) {12(48%) nematodes, 7(28%) trematode } & 6(24%) mixed infection} 29 (48.33%) adult (more 2 year) {sheep 15(51.72%) nematodes, 10 (34.48%) trematode & 4(13.79%) mixed infection}, 19 (47.50%) young goats {11(57.89%) nematodes, 5(26.32%) trematode & 3(15.79%) mixed infection}, 24 (60%) adult goats {14(58.33%) nematodes, 5(20.83%) trematode & 5 (20.83 %) mixed infection).

Serologically, antibodies against Sporocystis spp. infection were observed in sheep serum samples were 47.50% (57) & 40% (32) for goats serum samples. The infection in adult animals were {34 (56.67%) in sheep and 19 (47.50%) in goats} more than in young animals {23 (38.33%) in sheep and 13 (32.50 % in goats}. Sarcocystis in sheep distributed as macrocystis (16.67% for young and 11.67% adult), microcystis ovi-cans (10% young, 5% adult) and mixed infection (macrocystis and microcystis) were (56.67% young, 38.33%
adult), meanwhile in goats Sarcocystis macrocystis (25% young and 15% adult), microcystis (capricans) (15% young,12.5% adult) and mixed infection (macrocystis and microcystis) 47.50% for young, 32.50% for adult).

Sarcocystis infection in Sheep and goats induced a significant decrease in leukocytic count, monocytes, total protein, albumin, globulin, lymphocytosis, neutrophilia, non significant effect in basophils and eosinophilis beside significant rise AST,ALT& ALP.

It could be concluded that the Sarcocystis spp infected both sheep and goat, the infection in adult were more than in young ones. Sarcocystis induces changes in biochemical parameters. Therefore, it has of great importance the human to be trained not to feed their dogs and cats with uncooked meat, and abattoir remnants were burned to be effectively broken of infection cycle between the intermediate and the definitive hosts.

INTRODUCTION

Sarcocystis is one of the most prevalent parasites in livestock (*Metwally, et al. 2013*). *Sarcocystis spp.* normally develops in 2-host cycles consisting of an intermediate host and the final host; each host may be infected with more than one Sarcocystis spp. (*Bhatia 2000*). It is one of the most prevalent protozoan parasites in striated muscles of animals as sheep and goat (*Abo Shepard 1996*). *Sarcocystis* infections of sheep and goats are common throughout the world (*Melinda et al, 2010*). *Sarcocystis* have 4 species were identified from sheep (*Britt and Baker 1990*). Of these, *S.ovicanis* (synonymous=*S.tenella*) and *S. arieticanis*, pathogenic spp form microscopic cysts and are transmitted via Canids,
the definitive hosts, whereas S.ovifelis (synonymous=S gigantea) and S. medusiformis, non-pathogenic species, form macroscopic cysts and are transmitted via felids (Aysen et al 2007). Sarcocystis considered of economic importance, because ruminants will act as an intermediate host for a wide range of species (Dubey et al.1988). Control of Sarcocystis relied on preventing conta-mination of pasture and water with feces of dogs, foxes and cats (Buxton 1998).

The main objective of the study was to address the prevalence of natural infection of sheep and goats in Sharkia province with Sarcocystis and its effect on some blood parameters.

MATERIAL AND METHODS

Animal:

A total number of 200 animals (sheep and goats of both sexes and young animals less than 9 month and adult animals more than 2 year), 120 sheep (60 young and 60 adult ones) and 80 goats (40 young and 40 adult ones) were surveyed for the presence of Sarcocystis during 2012 from different slaughtered houses in Sharkia province (Zigzag, Abu Hamad, Hehia AND durp Nigm centers).

Blood samples:

Before animal slaudhtering 2 blood and 1 Faecal samples were taken from each animal, 1st blood sample was taken in tube contains EDTA for total and differential leukocytic count, 2nd sample was used for obtain a clear serum for estimation of some biochemical parameters and diagnosis of Sarcocystis infections by (ELISA).
Faecal samples:

Before animal slaughtering faecal sample was taken from each one for parasitological examination.

Muscle samples collection:

Post animal slaughtering, tissue samples were taken from oesophagus; heart and diaphragm muscles, preserved in ice bags and trans-ported from the slaughter house to the Laboratory for detection of *Sarcocystis* by:

1- **Macroscopic examination**: Fresh muscle samples were examined macrosco-pically for presence of macroscopic *Sarcocystis cysts* (*Huong 1999*) and,

2- **Microscopic examination**: For detection of microscopic Sarcocystis cysts:-

A) Small pieces of fresh muscle were compressed between two slides and examined microscopically (*Mowafy, 1993*).

B) Digestion method, 100 mL of digestion medium (2.5 g pepsin 700 and 10 mL HCL in 1L phosphate-buffered saline) was added to 50g (homogenized)and placed in a shaking water bath at 37°C for 30 min. The suspension was then centrifuged for 10 min at 1500 rpm and a precipitate smear was prepared, fixed with absolute methanol stained with Giemsa and examined by light microscopy at x400 and x1000 (*Dubey et al. 1989*).
Serological diagnosis of Sarcocystis (ELISA) Serum samples from all animals were subjected to ELISA for detection of antibody to Sarcocystis \((Voller, \textit{et al.} 1980)\) Antigen was prepared according to \textit{Morsy, et al} (1994)

Determination of leukogram and some biochemical parameters:

Post diagnosis of Sarcocystis infection by macroscopic, microscopic and ELISA beside parasitological examinations of faecal samples, 20 blood samples (adult animals that free from internal and external parasites (10 sheep and 10 goats) were divided into 2 group, 10 animal in each (5 sheep and 5 goats) 1st group blood samples from healthy sheep and goats free from internal and external parasites and \textit{Sarcocystis} (control), 2nd group blood samples from sheep and goats free from internal and external parasites infected with microscopic \textit{Sarcocystis} and +ve ELISA. Total and differential leukocytic count was estimated by using the improved Neubauer chamber and Natt and Herrick,s solution as diluting fluid according to \textit{(Jain, 1993)}, serum samples were used for determination of total protein calorimetrically \textit{(Doumas etal 1981)}, albumin \textit{(Drupt 1974)} and globulin was calculated as difference between total protein and albumin. (AST &ALT) \textit{(Reitman and Frankel (1957))}, ALP \textit{(John, 1982)}.

Statistical analysis:

The obtained data were statistically \textit{Petrie and Watson (1999)}.
RESULT AND DISCUSSION

In the present study, serologically *Sarcocystis* sp. prevalence by ELISA was in ovine 47.50% more than in caprine 40% (table, 2). Same prevalence were reported by *Mahran (2009)* found that the prevalence of ovine *Sarcocystis* was 41.26% and 36.92% in caprine in Red Sea Province. Higher infection rates have also been recorded in Aswan province were 88% (*Bashtar, et al.1990*). Same prevalences rates have also been recorded in other countries that have similar climatic conditions, such as ovine *Sarcocystis* spp. in Turkey were 49% (*Sevinç, 2000*), 55 % in South Australia (*Ford 1987*) 38% in goats in Libya (*Fathi and Abel Haseeb 2006*). This difference in prevalence of *Sarcocystis infection* may be due to different populations of stray dogs which play an important role in infection with *Sarcocystis*. (*Abo-Shehada, 1996*).

The prevalences of infection with *Sarcocystis* spp in young animals were 38.33% for sheep, 32.50% for goat less than adult age 56.67% for sheep and 32.50% for goat (table 2). Same observation was recorded by *Martinez, et.al. (1989)* and *Abo-Shehada (1996)* stated that prevalence of ovine sarcocystosis was higher in adult sheep than young ones. Prevalence of *Sarcocystis* infection in Czechoslovakia in young sheep were 35.67% and 61% in adult sheep *Svobodova and Nevole (1990)*, 22.6% in meat-producing animals under 6 months of age in Iraq (*Latif et al. 1999*). *Sarcocystis spp.* infection was higher in old camels (>5 year rather than young camels (<2 year) *Lotfi, et. al. (1995)*.)
Gross and microscopical examination of muscle samples of 120 sheep and 80 goats slaughtered in Sharkia Province abattoir revealed that the infection rate of Sarcocystis was 47.50% in sheep distributed as (macrocystis 16.67% for young &11.67% adult–microcystis (ovicans) 10% young 5% mature–mixed infection (macrocystis and microcystis were 56.67% for young, 38.33 % for adult one) (table 3), meanwhile in goats Sarcocystis was 40% in sheep distributed as (macro-cystis 25% for young and 15% adult – microcystis (capricans) 15% young, 12.5% adult – mixed infection (macrocystis and microcystis were 47.50% for young, 32.50 %for adult one) (table, 3). Same results were recorded by Al- Sultan, et.al. (2012) who found microcystis ovicans in heart muscles of slaughtered sheep in Kelantan (Malaysia). Al-Taee, et al. (2009) recorded microcystis ovicans and microcystis capricanis in heart muscles of slaughtered sheep and goats in Iraq.

The present study showed that a significant decrease in total leukocytic count and monocyte associated with significant increase in neutrophils and lymphocyte beside isignificant effect in eosinophilis and basophilis in sheep and goats infected with Sarcocystis spp (table 4). These changes in leukocytic count may be due to infections which stimulate migration of leukocytes from peripheral blood toward the tissue where parasites was found or to the regional lymphoid tissues, and hence total leukocyte decreased below the normal level (Okur, etal.1995). Decreased monocytes may be due to monocytes that were drawn from the blood toward the infected tissue and transformed into macrophages to attack the parasites which found mainly in tissues (Melinda et.al 2010). Increased lymphocytes are responsible for mediating immunity against parasites (Abdel-Azeem, etal. 2009).
Our study revealed a significant reduction in total protein, albumin, globulin beside significant increase in AST, ALT and ALP in sheep and goats infected with *Sarcocystis spp* (table, 5). Similar results were recorded by *Nabih and Abd El- Hamid (1984)* and *Fayer and Lunde (1987)*. This result may be due to the degenerative and necrotic changes accompanied the damage of muscles due to *Sarcocystis spp* infection and its toxins (*Keneko, 1989*). More explanations were presented by *Gharib, 1989* who reported that this enzyme is widely distributed allover muscle cells and tissues. Furthermore, its increase reflects an active pathological process in muscles due to *Sarcocystis spp*. *Sarcocystis spp* induce significant decrease in T protein, albumin and globulin in calves (*Dessouky, et al. (1984)*). Reduction in protein picture in animals infected with *Sarcocystis spp* may be due to decrease in gamma globulin (*Gill, etal 1988*). *Sarcocystosis* in calves induced elevation in liver enzymes (*Nevole, et al. 1986*). Elevation in liver enzymes may be due to development muscular cysts lead to degenerative changes, rupture of muscle fibers and sometimes myositis develops in which led to increase liver enzymes (*Nevole et al 1981*). *Sarcocystis* cause degenerative hepatitis lead to increase liver enzymes (*Prasse and Fayer 1981*).

It could be concluded that the sporocystis spp in both sheep and goat, infection in adult animals were more than young one. Sarcocystis infections induce changes in biochemical parameters. Therefore, it has of great importance that human not feed their dogs and cats with uncooked meat, and the abattoir remnants to be burned, in order to be effectively broken of infection cycle between the intermediate and the definitive hosts.
Prevalence of sarcocystis spp. In sheep and goats and its …

Table (1): Seroprevalence of sarcocystis spp. infection in sheep and goats sera by ELISA

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Mean of -ve control</th>
<th>Cut of value</th>
<th>sheep</th>
<th>goats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>T. examined</td>
<td>+ve sample</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sample</td>
<td>No.</td>
</tr>
<tr>
<td>young</td>
<td>0.146</td>
<td>0.292</td>
<td>60</td>
<td>23</td>
</tr>
<tr>
<td>adult</td>
<td>0.146</td>
<td>0.292</td>
<td>60</td>
<td>34</td>
</tr>
<tr>
<td>total</td>
<td>0.146</td>
<td>0.292</td>
<td>120</td>
<td>57</td>
</tr>
</tbody>
</table>

Table (2): macro and micro sarcocystis cysts spp. infection in sheep and goats

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Total</th>
<th>examined sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Macro</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No.</td>
</tr>
<tr>
<td>sheep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>young</td>
<td>60</td>
<td>18</td>
</tr>
<tr>
<td>adult</td>
<td>60</td>
<td>13</td>
</tr>
<tr>
<td>total</td>
<td>120</td>
<td>31</td>
</tr>
<tr>
<td>goat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>young</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>adult</td>
<td>40</td>
<td>7</td>
</tr>
<tr>
<td>total</td>
<td>80</td>
<td>17</td>
</tr>
</tbody>
</table>

Table (3): Leukogram of healthy and diseased sheep and goats (n=5)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>TLC x10^9/ul</th>
<th>differential leukocytic count (x10^9/ul)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Neutrophils</td>
</tr>
<tr>
<td>sheep</td>
<td>control</td>
<td>8.33±0.14</td>
</tr>
<tr>
<td></td>
<td>Diseased</td>
<td>7.91±0.10*</td>
</tr>
<tr>
<td>goats</td>
<td>control</td>
<td>8.19±0.11</td>
</tr>
<tr>
<td></td>
<td>Diseased</td>
<td>7.67±0.18*</td>
</tr>
</tbody>
</table>

*P < 0.05
Table (4): Serum protein picture and liver enzymes of healthy and diseased sheep and goats (n=5)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>protein picture (g/dl)</th>
<th>liver enzymes (µ/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T.protein</td>
<td>Albumin</td>
</tr>
<tr>
<td>Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sheep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>control</td>
<td>7.36±0.26</td>
<td>3.93±0.22</td>
</tr>
<tr>
<td>Diseased</td>
<td>6.48±0.19*</td>
<td>3.47±0.20*</td>
</tr>
<tr>
<td>goats</td>
<td></td>
<td></td>
</tr>
<tr>
<td>control</td>
<td>6.93±0.41</td>
<td>3.81±0.19</td>
</tr>
<tr>
<td>Diseased</td>
<td>5.61±0.40*</td>
<td>3.04±0.22</td>
</tr>
</tbody>
</table>

*P < 0.05

A) Macrocystis in oesephagus of goat thick type.

B) Macrocystis in oesephaous of goat thin type.

ACKNOWLEDGMENT

The authors thank Dr Waheed Moussa prof of Parasitology and head of biotechnology Lab., faculty of Vet Med Cairo Uni. for serodiagnosis of Sarcocystic spp. Antibodies by ELISA technique
REFERENCES

Prevalence of sarcocystis spp. In sheep and goats and its …

- **Ford, G. (1987):** Hosts of two canid genera, the red fox and the dog as alternat vector in transmission of Sarcocysts from sheep. Vet Para.26:13-20

- **John, D (1982):** Mouthed for estimation of Alkaline Phosphates. 9th Ed 80

- **Latif, B; Al-Delemi, J; Mohammed, B and Al-Amiry, A (1999):** Prevalence of Sarcocystis spp. in meat-producing animal in Iraq. Vet Paras,84, 85-90

Prevalence of sarcocystis spp. in sheep and goats and its impact on some components of blood in the Eastern Governorate.

Nasr, S. S. M. et., al.

The prevalence of the sarcocystis infection in sheep and goats and its impact on some components of blood in the Province of the Eastern Governorate.

Dr. Sami Shouki Mohamed Hindi, Dr. Ehab Mohamed Hussein, Dr. Saeed Mawiy.

Faculty of Veterinary Medicine, Animal Pathology Laboratory, the Veterinary Microbiology and Genetics Laboratory.

Abdulrahman Hospital Research Center (branch of Al-Qayyoum). The first-line parasites of the sarcocystis infection which cause large economic losses in sheep and goats. Therefore, it is necessary to perform serological tests such as ELISA after preparing antigen (Antigen) specific to the parasite. Therefore, 22 serum samples were examined from 22 small sheep and 22 adult goats, and 20 sera from 20 small goats and 20 adult goats. Blood samples were taken from each animal to examine the internal parasites in different areas of the Eastern Governorate.

The study showed that the infection rate was 5.72% (75%) in sheep and 20% (20) in goats. Infection was 20% (20%) in adult sheep and 70.05% (70.05) in adult goats. Infection in young animals was 20.72% (20.72) in sheep and 5.72% (5.72) in goats. The sarcocystis was distributed as follows (the form seen by the naked eye in sheep 0.05% and in goats 0.05%); the type seen under the microscope (Microsotst Kanzo 20% in goats and 70.05% in non-adults and mixed infection with the two types of 05.72% in non-adults and 20.22% in adults). Similarly, infection by the sarcocystis parasite caused a decrease in the number of white blood cells, macrophages, protein content, and production, and an increase in the number of lymphocytes and neutrophils. In addition, this study showed that infection by the sarcocystis parasite resulted in increased activity of liver enzymes (AST, ALT, and alkaline phosphatase).

من تلك الدراسة نستخلص أن طفيل الساركوسيستس يصيب الماعز والأغنام سواء كانت تلك الحيوانات بالغة أو صغيرة ومعدل الإصابة في الحيوانات البالغة أكبر من الصغيرة وتلك الإصابة تسبب في بعض التغيرات في الوظائف البيوكيميائية في الحيوانات.