PRESENCE OF PESTICIDE RESIDUES IN IMPORTED FROZEN FISH

Yasser M. Al-Ashmawy; Nader Y. Moustafa and Ibrahim I. Al-Hawary

1 B.V.Sc, Fac. of Vet. Med., Kafrelsheikh Univ.

ABSTRACT

45 random samples of imported frozen fish were collected from Al-Gharbiah markets, Egypt. The collected samples were represented by Synodus Saurus (Saurus), Trachurus trachurus (Atlantic-Horse Mackerel) and Scomber scombrus (Mackerel) fish, (15 of each). The collected samples (fish flesh) were examined for determination of pesticide residues (aldrin and malathion) on the basis of wet weight (ppb) by High Performance Liquid Chromatography (HPLC) apparatus. The obtained results revealed that the mean concentrations of aldrin in the examined samples of imported frozen Saurus, Atlantic-Horse Mackerel and Mackerel fish were 59.75 ± 2.53 ppb, 124.1±4.92 ppb and 150.86 ± 6.38 ppb, respectively. However the mean concentrations of malathion in the examined samples of imported frozen Saurus, Atlantic-Horse Mackerel and Mackerel fish were 110.80 ± 4.47 ppb, 181.80 ± 5.22 ppb and 243.60 ± 8.95 ppb, respectively. Comparing the results to the maximum permissible limits stated by the Egyptian Organization of Standardization "EOS" (2005), found that the examined frozen mackerel fish contained the highest residual concentrations of pesticides (aldrin and malathion) followed by Atlantic-Horse Mackerel and Saurus fish.
INTRODUCTION

Fish is a traditional and important food in the Egyptian’s diet. The quantity of imported fish was increased to fulfill the demand of animal protein. There are expectations of increased fish demand for consumption not only due to population growth, but also due to increasing price gap between fish and alternatives animal protein such as meat. (Hassan et al., 2011).

Pesticides can be defined as any substance or mixture of substances intended for prevention, destroying or controlling any pest act as vectors of human or animal diseases and unwanted species of plants (Goldman et al., 1990). The problem of pesticide residues in food has been addressed at international level through several committee sponsored by some United Nations organizations (FAO/WHO). Contamination of food of animal origin by organochlorine and organophosphorus compounds and their metabolites has been reported in various countries. Generally, most of pesticides are toxic to all forms of life and vary widely in their degree of possible hazards (Neumann, 1988).

Aldrin and dieldrin are organochlorine insecticides with similar chemical structures. Aldrin rapidly changed to dieldrin in plants and animals, dieldrin is stored in the fat and leaves the body very slowly, aldrin and dieldrin found in food like fish or shellfish from contaminated lakes or streams, or contaminated root crops, dairy products, or meat (ATSDR, 2002).

Malathion is a broad spectrum, non-systemic Organophosphorus insecticide that is highly toxic to fish and aquatic invertebrates, but does not appear to be toxic to plants. Some residential and agricultural uses have rather high application rates and resulting exposure (Jeannette and Jennifer, 2004).
Therefore, this study was planned to:

Detection of pesticide pollutants of (Aldrin and Malathion) in imported frozen fish from different countries.

MATERIALS AND METHODS

1- Collection of samples:

A total of 45 random samples of imported frozen fish were collected from Al-Gharbiah markets, Egypt, the collected samples were represented by Saurus, Atlantic-Horse Mackerel and Mackerel fish (15 of each). The collected samples (fish flesh) were examined for determination of pesticide residues (aldrin and malathion) on the basis of wet weight (ppb).

2-Determination of pesticides (aldrin and malathion):

2-1- Extraction and purification according to (Bonsir et al., 2007).

2-2- Partitioning according to (AOAC, 1990).

2-3- Clean-up according to (Serrano et al., 2008).

2-4- Preparation of stock standards.

2-5- Preparation of chromatographic working standards.

2-6- Preparation of the extracted sample.

2-7- Chromatography:

The prepared samples were examined for determination of pesticide residues (aldrin and malathion) on the basis of wet weight (ppb) by High Performance Liquid Chromatography (HPLC) apparatus.
RESULTS

Table (1): Statistical analytical results of aldrin concentrations in the examined samples of imported frozen fish (n=15).

<table>
<thead>
<tr>
<th>Types of imported fish</th>
<th>NO. of positive samples</th>
<th>Percentage of positive samples</th>
<th>Concentrations (PPb)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Saurus</td>
<td>2</td>
<td>13.33</td>
<td>23.70</td>
<td>95.80</td>
</tr>
<tr>
<td>Atlantic-Horse Mackerel</td>
<td>2</td>
<td>13.33</td>
<td>41.30</td>
<td>206.90</td>
</tr>
<tr>
<td>Mackerel</td>
<td>5</td>
<td>33.33</td>
<td>58.70</td>
<td>263.10</td>
</tr>
</tbody>
</table>

Table (2): Acceptability of the examined imported frozen fish samples based on their concentrations of aldrin.

<table>
<thead>
<tr>
<th>Types of imported fish</th>
<th>NO. of samples</th>
<th>NO. of samples above MRL</th>
<th>% of samples above MRL (Unaccepted)</th>
<th>MRL (PPb)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saurus</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>Atlantic-Horse Mackerel</td>
<td>15</td>
<td>1</td>
<td>6.67</td>
<td>200</td>
</tr>
<tr>
<td>Mackerel</td>
<td>15</td>
<td>2</td>
<td>13.33</td>
<td>200</td>
</tr>
</tbody>
</table>

* Egyptian Organization of Standardization "EOS" (2005)

Table (3): Statistical analytical results of Malathion concentrations in the examined samples of imported frozen fish (n=15).

<table>
<thead>
<tr>
<th>Types of imported fish</th>
<th>NO. of positive samples</th>
<th>Percentage of positive samples</th>
<th>Concentrations (PPb)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Saurus</td>
<td>2</td>
<td>13.33</td>
<td>48.50</td>
<td>173.10</td>
</tr>
<tr>
<td>Atlantic-Horse Mackerel</td>
<td>3</td>
<td>20.00</td>
<td>64.10</td>
<td>329.60</td>
</tr>
<tr>
<td>Mackerel</td>
<td>5</td>
<td>33.33</td>
<td>92.50</td>
<td>356.40</td>
</tr>
</tbody>
</table>

Table (4): Acceptability of the examined imported frozen fish samples based on their concentrations of malathion.

<table>
<thead>
<tr>
<th>Types of imported fish</th>
<th>NO. of samples</th>
<th>NO. of samples above MRL</th>
<th>% of samples above MRL (Unaccepted)</th>
<th>MRL (PPb)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saurus</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>300</td>
</tr>
<tr>
<td>Atlantic-Horse Mackerel</td>
<td>15</td>
<td>1</td>
<td>6.67</td>
<td>300</td>
</tr>
<tr>
<td>Mackerel</td>
<td>15</td>
<td>3</td>
<td>20.00</td>
<td>300</td>
</tr>
</tbody>
</table>

* Egyptian Organization of Standardization "EOS" (2005)
DISCUSSION

It is evident from the results recorded in table (1) that the concentration of aldrin in the examined samples of imported frozen fish ranged from 23.70 to 95.80 ppb with a mean of 59.75 ± 2.53 ppb, 41.30 to 206.90 ppb with a mean of 124.1 ± 4.92 ppb and 58.70 to 263.10 ppb with a mean of 150.86 ± 6.38 ppb for imported frozen Saurus, Atlantic-Horse Mackerel and Mackerel fish, respectively. The above mentioned concentrations nearly similar to those obtained by *Henry et al. (1998)* and *Verma et al. (2006)*, while lower concentrations were recorded by *Shailaja and Singhal (1994)* and *Shailaja and Nair (1997)*.

According to the permissible limits of aldrin stipulated by (*EOS, 2005*), results in table (2) showed that 6.67% and 13.33% of examined imported frozen Atlantic-Horse Mackerel and Mackerel fish, respectively, were unfit for human consumption where they exceed this permissible limits.

Concerning to the results recorded in table (3) the concentration of malathion in the examined samples of imported frozen fish ranged from 48.50 to 173.10 ppb with a mean of 110.80 ± 4.47 ppb, 64.10 to 329.60 ppb with a mean of 181.80 ± 5.22 ppb and 92.50 to 356.40 ppb with a mean of 243.60 ± 8.95 ppb for imported frozen Saurus, Atlantic-Horse Mackerel and Mackerel fish, respectively.

Many authors referred to the presence of organophosphorus pesticides in fish, water and sediments such as *Hanazato (1991)* and *Soumis et al. (2003)*. Malathion contamination has a bad effect on the aquatic communities despite the fact that it is globally applied and can be legally applied directly over water (*Kiely, 2004*).
Regarding to the permissible limits of aldrin stipulated by (EOS, 2005), results in table (4) declared that 6.67% and 20% of the examined imported frozen Atlantic-Horse Mackerel and Mackerel fish were unfit for human consumption, respectively, where they exceed this permissible limits.

The obtained results in the present study indicated that the examined imported frozen Mackerel fish contained the highest residual levels of pesticides (aldrin and malathion) followed by Atlantic-Horse Mackerel and Saurus fish.

REFERENCES

- E.O.S. “Egyptian Organization for Standardization and Quality Control” (2005): Maximum residual limits for Malathion in food, No.2222/05 and Maximum residual limits for Aldrin in food, No 2078/92.
Pr
esence Of Pesticide Residues In Imported Frozen Fish.

- **Hassan A. Ahlam; Afaf Z. Othman and Nayera Y. Sulaiman (2011):** Economic Study of Some Factors Impact on the Fish Consumption in Egypt, original articles of applied sciences research, 7(12): 1834-1839, ISSN 1819-544X.

- **Shailaja, M.S. and Nair Maheshwari (1997):** Seasonal differences in organochlorine pesticide concentrations of zooplankton and fish in the Arabian Sea. Marine Environmental Research 44(3): 263-274.

Presence Of Pesticide Residues In Imported Frozen Fish.

Towajad Mitbqiyat al-mibidat al-akhiriyah fi al-asmak al-majmadah al-mashturada

Yasser M. Al-Ashmawy 1,2, A. D. Nader, H. Mustafa, A. D. /brahim el-hawari

1- Bkakaloryos al-ulfum al-tyebiyyah - Jumada al-Thani 1997m
2- Qim Muraqqa'a al-agnimah kliyya al-tyeb al-biytri - Jumada kfar al-shikh

Ajrithat al-adrassat al-takhliyyah lumurfah mad'i towajad bish al-molshatat al-bi'ihah min
Mitbqiyat al-mibidat al-akhiriyah (al-alad ri'in ul malathiyyun) fi al-asmak al-mashturada. Wad bi'mi' ah
al-adrassat li'aib 45 uqyinat ashunat min al-asmak al-majmadah al-mashturada liti tam jumah ma
walad biqu 15 uqinah min kyll min al-asmak.

Wad akhsarat ntnitah al-adrassat li'ali an mi'twsat tariky al-
aladri min al-asmak al-mashturada
al-makronnaw al-mibrak ul malakril - 59.75 ± 2.53, 124.10 ± 4.92, 150.86 ± 6.38
juz fi al-bilwun, li'ali al-
aladri.

Wad bi'miksamah al-yiyassat al-qiyasiyah al-
ymisr wa'an A'smak al-makronnaw al-mashturada mibqilah. I'lan
6.67%, 13.33% min asmak al-mashturada al-mibrak ul malakril li'ali al-
aladri, yigiy samahah
wa'ttayy yahd al-qisy al-asmiyyah asmush bi al-
aladri.

wa ka'idak mi'twsat tarikyiyah min ul malathiyyun fi al-
asmak al-
mashturada al-makronnaw al-mibrak ul malakril - 110.80 ± 4.47, 181.80 ± 5.22, 243.60 ± 8.95
juz fi al-bilwun, li'ali al-
aladri.

Wad bi'miksamah al-yiyassat al-qiyasiyah al-
ymisr wa'an A'smak al-makronnaw al-
mashturada mibqilah. I'lan
6.67%, 20% min asmak al-
mashturada al-mibrak ul malakril, li'ali al-

wa'ttayy yahd al-qisy al-asmiyyah asmush bi al-\nmalathiyyun.

ka'am akhsarat al-nntitah li'ali tam hasath li'ali min al-
adrassat li'an A'smak al-
malakril
al-mashturada al-majmadah tamhiliyah ma'ali al-
mitbqiyat al-
mitbqiyat al-akhiriyah (al-alad ri'in
ul malathiyyun) bilaa al-
malakril wan A'smak al-
