Table (1): Effect of diclazuril (1 or 2 ppm), flavomycin (75g/ton) and their combinations on skin hypersensitivity (increase in the thickness of the wattle by mm) in chicken. | Group | | | Control | | | | | |----------------------|-------------------------|---------------------|-------------------------|-----------------------------|---------------------|-----------------------------|---------------------| | | Diclazuril | | Diclazuril + Flavomycin | | Flavomycin | -ve | +ve | | Days after injection | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 | | 1 st day | 0.19 ± 0.03^{a} | 0.10 ± 0.02^{b} | 0.18 ± 0.01^{a} | $0.09 \pm 0.02^{\text{ b}}$ | 0.22 ± 0.03^{a} | 0.10 ± 0.01 b | 0.21 ± 0.03^{a} | | 2 nd day | 0.13 ± 0.03^{a} | 0.03 ± 0.02^{b} | 0.12 ± 0.03^{a} | $0.04 \pm 0.01^{\text{ b}}$ | 0.13 ± 0.02^{a} | $0.03 \pm 0.01^{\text{ b}}$ | 0.13 ± 0.03^{a} | | 3 rd day | 0.01 ± 0.00^{a} | 0.01 ± 0.00^{a} | 0.02 ± 0.01^{a} | $0.00 \pm 0.00^{\rm a}$ | 0.03 ± 0.01^{a} | $0.00 \pm 0.00^{\text{ a}}$ | 0.02 ± 0.01^{a} | | 4 th day | $0.00\pm0.00^{\rm \ a}$ | 0.00 ± 0.00^{a} | Values are mean \pm S.D.(n = 5). Data were compared by ANOVA, Values superscripted by the same letter are not significantly different, p>0.05 **Table (2):** Effect of diclazuril (1 or 2 ppm), flavomycin (75g/ton) and their combinations on the total leucocytic count (x 10 3) in chicken. | | | | Control | | | | | |--------|----------------------------|----------------------------|-------------------------|----------------------------|----------------------------|----------------------------|--------------------------| | Group | Diclazuril | | Diclazuril + Flavomycin | | Flavomycin | -ve untreated unvaccin | +ve untreated vaccinated | | ge | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 | | 21 day | $38.5 \pm 2.6^{\text{ a}}$ | $27.9 \pm 2.2^{\text{ b}}$ | 37.7 ± 4.1^{a} | 29.3 ±1.3 ^b | $39.8 \pm 2.5^{\text{ a}}$ | $28.8 \pm 3.4^{\text{ b}}$ | 41.7 ± 1.2 ^a | | 28 day | 39.0 ± 2.7^{a} | $28.7 \pm 1.5^{\text{ b}}$ | 38.0 ± 3.3^{a} | $29.8 \pm 1.8^{\text{ b}}$ | 38.5 ± 1.9^{a} | 29.5 ± 1.9^{b} | 41.0 ± 1.3^{a} | | 35 day | $39.3 \pm 4.7^{\text{ a}}$ | $29.3 \pm 2.3^{\text{ b}}$ | 39.0 ± 4.2^{a} | $28.8 \pm 1.8^{\text{ b}}$ | 40.7 ± 1.6^{a} | 28.3 ± 1.8^{b} | 39.5 ± 2.6^{a} | | 42 day | 39.7 ± 3.7 ^a | 28.3 ± 2.9^{b} | 39.7 ± 4.6^{a} | $27.3 \pm 2.8^{\text{ b}}$ | 39.7 ± 2.9 °a | 30.3 ± 1.4 ^b | 39.8 ± 1.3 ^a | Values are mean \pm S.D.(n = 10). Data were compared by ANOVA, Values superscripted by the same letter are not significantly different, p>0 **Table (3):** Effect of diclazuril (1 or 2 ppm), flavomycin (75g/ton) and their combinations on lymphocytes count (% of the total leucocytic count) in chicken. | Group | Diclazuril | | Diclazuril + Flavomycin | | Flavomycin | -ve | +ve | |--------|-------------------------|----------------------------|-------------------------|----------------------------|-------------------------|----------------------------|-------------------------| | Age | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 | | 21 day | 60.7 ± 3.0 ^a | 48.3 ± 4.0^{b} | 60.6 ± 3.6 ^a | $47.6 \pm 2.0^{\text{ b}}$ | 58.0 ± 4.2 ^a | $47.3 \pm 3.5^{\text{ b}}$ | 60.3 ± 4.0 ^a | | 28 day | 61.1 ± 2.8^{a} | 51.0 ± 3.0^{b} | 62.3 ± 2.5^{a} | 53.3 ± 2.4^{b} | 62.6 ± 3.5^{a} | 52.6 ± 3.2^{b} | 61.3 ± 3.2^{a} | | 35 day | 60.0 ± 4.0^{a} | 51.6 ± 4.6^{b} | 61.5 ± 5.0^{a} | $51.3 \pm 2.1^{\text{ b}}$ | 65.6 ± 3.6^{a} | 53.9 ± 3.6^{b} | 64.6 ± 2.8^{a} | | 42 day | 62.4 ± 4.5 ^a | $50.7 \pm 4.4^{\text{ b}}$ | 63.9 ± 5.1 ^a | 53.8 ± 3.7 ^b | 64.8 ± 4.8 ^a | 52.7 ± 4.1 ^b | 64.3 ± 2.2 ^a | Values are mean \pm S.D.(n =10). Data were compared by ANOVA, Values superscripted by the same letter are not significantly different, p>0.05. **Table (4):** Effect of diclazuril (1 or 2 ppm), flavomycin (75g/ton) and their combinations on antibody titer (log transformed) in chicken. | Group | Diclazuril | | Diclazuril + | Flavomycin | Flavomycin | -ve | +ve | |--------|---------------------|-------------------|-------------------|---------------------------|-------------------|-------------------|-------------------| | Age | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 | | 21 day | 3.5 ± 0.1^{a} | 2.3 ± 0.2^{b} | 3.4 ± 0.1^{a} | 2.4 ± 0.2^{b} | 3.6 ± 0.1^{a} | 2.2 ± 0.1^{b} | 3.3 ± 0.5^{a} | | 28 day | $2.7\pm0.2^{\rm a}$ | $2.0\pm0.5^{\ b}$ | 3.0 ± 0.3^{a} | $1.9 \pm 0.2^{\text{ b}}$ | 3.1 ± 0.3^{a} | 2.3 ± 0.2^{b} | 3.4 ± 0.1^{a} | | 35 day | 3.0 ± 0.5^{a} | 2.1 ± 0.4^{b} | 3.1 ± 0.2^{a} | $2.2 \pm 0.2^{\text{ b}}$ | 3.3 ± 0.3^{a} | 2.1 ± 0.3 b | 3.3 ± 0.2^{a} | | 42 day | 3.7 ± 0.3^{a} | 1.9 ± 0.4^{b} | 3.0 ± 0.6^{a} | $2.1\pm0.4^{\rm \ b}$ | 3.1 ± 0.3^{a} | 1.7 ± 0.3^{b} | 3.1± 0.5 a | Values are mean \pm S.D.(n = 5). Data were compared by ANOVA, Values superscripted by the same letter are not significantly different, p>0.05 **Table (5):** Effect of diclazuril (1 or 2 ppm), flavomycin (75g/ton) and their combinations on the total serum protein (g/dl) in chicken. | Group | | | Control | | | | | |--------|---------------------|-----------------------------|-----------------------------|-----------------------------|---------------------|-----------------------------|---------------------| | A 500 | Diclazuril | | Diclazuril + Flavomycin | | Flavomycin | -ve | +ve | | Age | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 | | 21 day | 3.80 ± 0.34^{a} | $2.57 \pm 0.22^{\text{ b}}$ | $3.67 \pm 0.20^{\text{ a}}$ | $2.56 \pm 0.29^{\text{ b}}$ | 3.70 ± 0.18^{a} | $2.58 \pm 0.20^{\text{ b}}$ | 3.98 ± 0.24^{a} | | 28 day | 3.54 ± 0.18^{a} | $2.49 \pm 0.21^{\text{ b}}$ | 3.52 ± 0.31^{a} | $2.57 \pm 0.12^{\text{ b}}$ | 3.49 ± 0.17^{a} | $2.50 \pm 0.21^{\text{ b}}$ | 3.62 ± 0.15^{a} | | 35 day | 3.53 ± 0.21^{a} | 2.60 ± 0.26 b | 3.54 ± 0.19^{a} | $2.50 \pm 0.24^{\text{ b}}$ | 3.36 ± 0.16^{a} | $2.43 \pm 0.25^{\text{ b}}$ | 3.51 ± 0.10^{a} | | 42 day | 3.71 ± 0.19^{a} | 2.64 ± 0.11^{b} | 3.84 ± 0.12^{a} | $2.65 \pm 0.15^{\text{ b}}$ | 3.79 ± 0.17^{a} | $2.57 \pm 0.11^{\text{ b}}$ | 3.78 ± 0.25^{a} | Values are mean \pm S.D.(n = 5). Data were compared by ANOVA, Values superscripted by the same letter are not significantly different, p>0.05 **Table (6):** Effect of diclazuril(1 or 2 ppm), flavomycin(75g/ton) and their combinations on the serum α -globulins (g/dl) in chicken. | | Froup | | | Control | | | | | |---------|------------|---------------------|------------------------------|-----------------------------|-----------------------------|---------------------|-----------------------------|-------------------------| | Age | | Diclazuril | | Diclazuril + | Flavomycin | Flavomycin | -ve | +ve | | | | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 | | 21 days | α_1 | 0.73 ± 0.16^{a} | 0.44 ± 0.04^{b} | $0.64 \pm 0.06^{\text{ a}}$ | $0.46 \pm 0.03^{\text{ b}}$ | 0.66 ± 0.11^{a} | 0.44 ± 0.06^{b} | 0.76 ± 0.14^{a} | | 21 day | α_2 | 0.50 ± 0.04^{a} | $0.35 \pm 0.06^{\mathrm{b}}$ | 0.51 ± 0.07^{a} | $0.34 \pm 0.04^{\text{ b}}$ | 0.49 ± 0.02^{a} | $0.32 \pm 0.07^{\text{ b}}$ | 0.53 ± 0.10^{a} | | 28 day | α_1 | 0.66 ± 0.04^{a} | 0.43 ± 0.06^{b} | 0.69 ± 0.02^{a} | 0.46 ± 0.08 b | 0.61 ± 0.08^{a} | $0.44 \pm 0.05^{\text{ b}}$ | 0.73 ± 0.13^{a} | | 26 day | α_2 | 0.46 ± 0.05^{a} | $0.34 \pm 0.03^{\text{ b}}$ | 0.45 ± 0.01^{a} | $0.33 \pm 0.04^{\text{ b}}$ | 0.47 ± 0.06^{a} | $0.29 \pm 0.04^{\rm b}$ | 0.46 ± 0.03^{a} | | 35 day | α_1 | 0.70 ± 0.09^{a} | $0.48 \pm 0.03^{\text{ b}}$ | $0.66 \pm 0.05^{\text{ a}}$ | $0.43 \pm 0.02^{\text{ b}}$ | 0.66 ± 0.07^{a} | $0.43 \pm 0.05^{\text{ b}}$ | $0.65 \pm 0.05^{\rm a}$ | | 33 day | α_2 | 0.48 ± 0.05^{a} | $0.33 \pm 0.01^{\text{ b}}$ | 0.43 ± 0.03^{a} | $0.32 \pm 0.02^{\text{ b}}$ | 0.41 ± 0.02^{a} | $0.30 \pm 0.04^{\text{ b}}$ | 0.47 ± 0.04^{a} | | 42 doz. | α_1 | 0.63 ± 0.08^{a} | $0.41 \pm 0.05^{\text{ b}}$ | $0.67 \pm 0.05^{\text{ a}}$ | $0.46 \pm 0.06^{\text{ b}}$ | 0.65 ± 0.06^{a} | 0.42 ± 0.02^{b} | 0.63 ± 0.03^{a} | | 42 day | α_2 | 0.47 ± 0.07^{a} | 0.32 ± 0.02^{b} | 0.45 ± 0.02^{a} | $0.29 \pm 0.03^{\text{ b}}$ | 0.46 ± 0.05^{a} | $0.28 \pm 0.05^{\text{ b}}$ | 0.44 ± 0.02^{a} | Values are mean \pm S.D (n = 5). Data were compared by ANOVA, Values superscripted by the same letter are not significantly different, p>0.05 **Table(7):** Effect of diclazuril(1 or 2 ppm), flavomycin(75g/ton) and their combinations on the serum β -globulins (g/dl) in chicken (g/dl) in chicken. | Group | | | | Control | | | | | |--------|-----|-----------------------------|---------------------|--------------------------|--------------------------|---------------------|----------------------|--------------------------| | | | Diclazuril | | Diclazuril + Flavomycin | | Flavomycin | -ve | +ve | | Age | | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 | | 21 day | β 1 | 0.37 ± 0.05^{a} | 0.22 ± 0.02^{b} | 0.39 ± 0.04^{a} | 0.23 ± 0.02^{b} | 0.36 ± 0.03^{a} | 0.21 ± 0.03^{b} | 0.39 ± 0.04^{a} | | 21 day | β 2 | 0.32 ± 0.03^{a} | 0.20 ± 0.04^{b} | 0.36 ± 0.01 ^a | 0.24 ± 0.02^{b} | 0.33 ± 0.04^{a} | 0.21 ± 0.04^{b} | 0.35 ± 0.03^{a} | | 28 day | β 1 | 0.35 ± 0.04^{a} | 0.23 ± 0.03^{b} | 0.32 ± 0.03^{a} | 0.24 ± 0.01^{b} | 0.31 ± 0.02 a | 0.24 ± 0.02^{b} | 0.33 ± 0.04^{a} | | 28 day | β 2 | 0.27 ± 0.02^{a} | 0.18 ± 0.03^{b} | 0.27 ± 0.06^{a} | 0.17 ± 0.02^{b} | 0.25 ± 0.01^{a} | 0.16 ± 0.03^{b} | 0.26 ± 0.04^{a} | | 35 day | β 1 | 0.36 ± 0.02^{a} | 0.21 ± 0.03^{b} | 0.33 ± 0.04^{a} | 0.22 ± 0.09^{b} | 0.34 ± 0.01^{a} | 0.17 ± 0.04^{b} | 0.31 ± 0.02 ^a | | 33 day | β 2 | 0.25 ± 0.02^{a} | 0.13 ± 0.04^{b} | 0.24 ± 0.03^{a} | 0.13 ± 0.01 ^b | 0.27 ± 0.02^{a} | $0.10 \pm 0.2^{\ b}$ | 0.23 ± 0.01 ^a | | 42 day | β 1 | 0.27 ± 0.05 a | 0.15 ± 0.04^{b} | 0.26 ± 0.04^{a} | 0.16 ± 0.03^{b} | 0.30 ± 0.07^{a} | 0.13 ± 0.02^{b} | 0.27 ± 0.04^{a} | | 42 day | β 2 | $0.25 \pm 0.03^{\text{ a}}$ | 0.12 ± 0.03^{b} | 0.23 ± 0.05 a | 0.12 ± 0.02^{b} | 0.27 ± 0.05^{a} | 0.14 ± 0.03^{b} | 0.24 ± 0.01 ^a | Values are mean \pm S.D.(n = 5). Data were compared by ANOVA, Values superscripted by the same letter are not significantly different, p>0.05. Table (8): Effect of diclazuril(1or 2 ppm), flavomycin(75g/ton) and their combinations on the serum δ-globulins (g/dl) in chicken. | | | | | | Control | | | | |--------|------------|-----------------------------|-----------------------------|-------------------------|-----------------------------|---------------------|-----------------------------|---------------------| | Gro | up | Dicla | zuril | Diclazuril + Flavomycin | | Flavomycin | -ve | +ve | | Age | | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 | | 21 day | δ_1 | 0.49 ± 0.01 ^a | 0.25 ± 0.05 b | 0.42 ± 0.14^{a} | 0.21± 0.04 b | 0.55 ± 0.18^{a} | 0.22 ± 0.06^{b} | 0.51 ± 0.09^{a} | | | δ_2 | 0.23 ± 0.02 a | 0.10 ± 0.01 b | 0.22 ± 0.06^{a} | 0.11 ± 0.02^{b} | 0.19 ± 0.04 a | 0.09 ± 0.04^{b} | 0.20 ± 0.02^{a} | | 28 day | δ_1 | 0.47 ± 0.08 a | 0.29 ± 0.04^{b} | 0.49 ± 0.16^{a} | 0.31 ± 0.03^{b} | 0.44 ± 0.05^{a} | 0.26 ± 0.03^{b} | 0.44 ± 0.03^{a} | | | δ 2 | 0.14 ± 0.02^{a} | $0.05 \pm 0.01^{\ b}$ | 0.15 ± 0.03^{a} | 0.07 ± 0.02^{b} | 0.14 ± 0.03^{a} | 0.04 ± 0.01^{b} | 0.17 ± 0.02^{a} | | 35 day | δ 1 | 0.43 ± 0.07^{a} | 0.29 ± 0.01^{b} | 0.45 ± 0.07^{a} | $0.27 \pm 0.07^{\text{ b}}$ | 0.39 ± 0.03^{a} | 0.26 ± 0.04^{b} | 0.42 ± 0.04^{a} | | | δ 2 | 0.17 ± 0.02^{a} | 0.04 ± 0.05 b | 0.18 ± 0.01^{a} | 0.06 ± 0.03^{b} | 0.15 ± 0.01^{a} | 0.06 ± 0.01^{b} | 0.16 ± 0.02^{a} | | 42 day | δ 1 | $0.65 \pm 0.07^{\text{ a}}$ | $0.39 \pm 0.07^{\text{ b}}$ | 0.74 ± 0.15^{a} | 0.40 ± 0.09^{b} | 0.64 ± 0.09^{a} | $0.41 \pm 0.07^{\text{ b}}$ | 0.75 ± 0.17^{a} | | | δ 2 | $0.24 \pm 0.03^{\text{ a}}$ | 0.10 ± 0.03^{b} | 0.22 ± 0.06^{a} | 0.11 ± 0.02^{b} | 0.24 ± 0.06^{a} | $0.11 \pm 0.03^{\text{ b}}$ | 0.27 ± 0.05^{a} | Values are mean \pm S.D.(n = 5). Data were compared by ANOVA, Values superscripted by the same letter are not significantly different, p>0.05