Table (1): Effect of diclazuril (1 or 2 ppm), flavomycin (75g/ton) and their combinations on skin hypersensitivity (increase in the thickness of the wattle by mm) in chicken.

Group			Control				
	Diclazuril		Diclazuril + Flavomycin		Flavomycin	-ve	+ve
Days after injection	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
1 st day	0.19 ± 0.03^{a}	0.10 ± 0.02^{b}	0.18 ± 0.01^{a}	$0.09 \pm 0.02^{\text{ b}}$	0.22 ± 0.03^{a}	0.10 ± 0.01 b	0.21 ± 0.03^{a}
2 nd day	0.13 ± 0.03^{a}	0.03 ± 0.02^{b}	0.12 ± 0.03^{a}	$0.04 \pm 0.01^{\text{ b}}$	0.13 ± 0.02^{a}	$0.03 \pm 0.01^{\text{ b}}$	0.13 ± 0.03^{a}
3 rd day	0.01 ± 0.00^{a}	0.01 ± 0.00^{a}	0.02 ± 0.01^{a}	$0.00 \pm 0.00^{\rm a}$	0.03 ± 0.01^{a}	$0.00 \pm 0.00^{\text{ a}}$	0.02 ± 0.01^{a}
4 th day	$0.00\pm0.00^{\rm \ a}$	0.00 ± 0.00^{a}	0.00 ± 0.00^{a}	0.00 ± 0.00^{a}	0.00 ± 0.00^{a}	0.00 ± 0.00^{a}	0.00 ± 0.00^{a}

Values are mean \pm S.D.(n = 5). Data were compared by ANOVA, Values superscripted by the same letter are not significantly different, p>0.05

Table (2): Effect of diclazuril (1 or 2 ppm), flavomycin (75g/ton) and their combinations on the total leucocytic count (x 10 3) in chicken.

			Control				
Group	Diclazuril		Diclazuril + Flavomycin		Flavomycin	-ve untreated unvaccin	+ve untreated vaccinated
ge	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
21 day	$38.5 \pm 2.6^{\text{ a}}$	$27.9 \pm 2.2^{\text{ b}}$	37.7 ± 4.1^{a}	29.3 ±1.3 ^b	$39.8 \pm 2.5^{\text{ a}}$	$28.8 \pm 3.4^{\text{ b}}$	41.7 ± 1.2 ^a
28 day	39.0 ± 2.7^{a}	$28.7 \pm 1.5^{\text{ b}}$	38.0 ± 3.3^{a}	$29.8 \pm 1.8^{\text{ b}}$	38.5 ± 1.9^{a}	29.5 ± 1.9^{b}	41.0 ± 1.3^{a}
35 day	$39.3 \pm 4.7^{\text{ a}}$	$29.3 \pm 2.3^{\text{ b}}$	39.0 ± 4.2^{a}	$28.8 \pm 1.8^{\text{ b}}$	40.7 ± 1.6^{a}	28.3 ± 1.8^{b}	39.5 ± 2.6^{a}
42 day	39.7 ± 3.7 ^a	28.3 ± 2.9^{b}	39.7 ± 4.6^{a}	$27.3 \pm 2.8^{\text{ b}}$	39.7 ± 2.9 °a	30.3 ± 1.4 ^b	39.8 ± 1.3 ^a

Values are mean \pm S.D.(n = 10). Data were compared by ANOVA, Values superscripted by the same letter are not

significantly different, p>0

Table (3): Effect of diclazuril (1 or 2 ppm), flavomycin (75g/ton) and their combinations on lymphocytes count (% of the total leucocytic count) in chicken.

Group	Diclazuril		Diclazuril + Flavomycin		Flavomycin	-ve	+ve
Age	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
21 day	60.7 ± 3.0 ^a	48.3 ± 4.0^{b}	60.6 ± 3.6 ^a	$47.6 \pm 2.0^{\text{ b}}$	58.0 ± 4.2 ^a	$47.3 \pm 3.5^{\text{ b}}$	60.3 ± 4.0 ^a
28 day	61.1 ± 2.8^{a}	51.0 ± 3.0^{b}	62.3 ± 2.5^{a}	53.3 ± 2.4^{b}	62.6 ± 3.5^{a}	52.6 ± 3.2^{b}	61.3 ± 3.2^{a}
35 day	60.0 ± 4.0^{a}	51.6 ± 4.6^{b}	61.5 ± 5.0^{a}	$51.3 \pm 2.1^{\text{ b}}$	65.6 ± 3.6^{a}	53.9 ± 3.6^{b}	64.6 ± 2.8^{a}
42 day	62.4 ± 4.5 ^a	$50.7 \pm 4.4^{\text{ b}}$	63.9 ± 5.1 ^a	53.8 ± 3.7 ^b	64.8 ± 4.8 ^a	52.7 ± 4.1 ^b	64.3 ± 2.2 ^a

Values are mean \pm S.D.(n =10). Data were compared by ANOVA, Values superscripted by the same letter are not significantly different, p>0.05.

Table (4): Effect of diclazuril (1 or 2 ppm), flavomycin (75g/ton) and their combinations on antibody titer (log transformed) in chicken.

Group	Diclazuril		Diclazuril +	Flavomycin	Flavomycin	-ve	+ve
Age	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
21 day	3.5 ± 0.1^{a}	2.3 ± 0.2^{b}	3.4 ± 0.1^{a}	2.4 ± 0.2^{b}	3.6 ± 0.1^{a}	2.2 ± 0.1^{b}	3.3 ± 0.5^{a}
28 day	$2.7\pm0.2^{\rm a}$	$2.0\pm0.5^{\ b}$	3.0 ± 0.3^{a}	$1.9 \pm 0.2^{\text{ b}}$	3.1 ± 0.3^{a}	2.3 ± 0.2^{b}	3.4 ± 0.1^{a}
35 day	3.0 ± 0.5^{a}	2.1 ± 0.4^{b}	3.1 ± 0.2^{a}	$2.2 \pm 0.2^{\text{ b}}$	3.3 ± 0.3^{a}	2.1 ± 0.3 b	3.3 ± 0.2^{a}
42 day	3.7 ± 0.3^{a}	1.9 ± 0.4^{b}	3.0 ± 0.6^{a}	$2.1\pm0.4^{\rm \ b}$	3.1 ± 0.3^{a}	1.7 ± 0.3^{b}	3.1± 0.5 a

Values are mean \pm S.D.(n = 5). Data were compared by ANOVA, Values superscripted by the same letter are not

significantly different, p>0.05

Table (5): Effect of diclazuril (1 or 2 ppm), flavomycin (75g/ton) and their combinations on the total serum protein (g/dl) in chicken.

Group			Control				
A 500	Diclazuril		Diclazuril + Flavomycin		Flavomycin	-ve	+ve
Age	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
21 day	3.80 ± 0.34^{a}	$2.57 \pm 0.22^{\text{ b}}$	$3.67 \pm 0.20^{\text{ a}}$	$2.56 \pm 0.29^{\text{ b}}$	3.70 ± 0.18^{a}	$2.58 \pm 0.20^{\text{ b}}$	3.98 ± 0.24^{a}
28 day	3.54 ± 0.18^{a}	$2.49 \pm 0.21^{\text{ b}}$	3.52 ± 0.31^{a}	$2.57 \pm 0.12^{\text{ b}}$	3.49 ± 0.17^{a}	$2.50 \pm 0.21^{\text{ b}}$	3.62 ± 0.15^{a}
35 day	3.53 ± 0.21^{a}	2.60 ± 0.26 b	3.54 ± 0.19^{a}	$2.50 \pm 0.24^{\text{ b}}$	3.36 ± 0.16^{a}	$2.43 \pm 0.25^{\text{ b}}$	3.51 ± 0.10^{a}
42 day	3.71 ± 0.19^{a}	2.64 ± 0.11^{b}	3.84 ± 0.12^{a}	$2.65 \pm 0.15^{\text{ b}}$	3.79 ± 0.17^{a}	$2.57 \pm 0.11^{\text{ b}}$	3.78 ± 0.25^{a}

Values are mean \pm S.D.(n = 5). Data were compared by ANOVA, Values superscripted by the same letter are not significantly different, p>0.05

Table (6): Effect of diclazuril(1 or 2 ppm), flavomycin(75g/ton) and their combinations on the serum α -globulins (g/dl) in chicken.

	Froup			Control				
Age		Diclazuril		Diclazuril +	Flavomycin	Flavomycin	-ve	+ve
		Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
21 days	α_1	0.73 ± 0.16^{a}	0.44 ± 0.04^{b}	$0.64 \pm 0.06^{\text{ a}}$	$0.46 \pm 0.03^{\text{ b}}$	0.66 ± 0.11^{a}	0.44 ± 0.06^{b}	0.76 ± 0.14^{a}
21 day	α_2	0.50 ± 0.04^{a}	$0.35 \pm 0.06^{\mathrm{b}}$	0.51 ± 0.07^{a}	$0.34 \pm 0.04^{\text{ b}}$	0.49 ± 0.02^{a}	$0.32 \pm 0.07^{\text{ b}}$	0.53 ± 0.10^{a}
28 day	α_1	0.66 ± 0.04^{a}	0.43 ± 0.06^{b}	0.69 ± 0.02^{a}	0.46 ± 0.08 b	0.61 ± 0.08^{a}	$0.44 \pm 0.05^{\text{ b}}$	0.73 ± 0.13^{a}
26 day	α_2	0.46 ± 0.05^{a}	$0.34 \pm 0.03^{\text{ b}}$	0.45 ± 0.01^{a}	$0.33 \pm 0.04^{\text{ b}}$	0.47 ± 0.06^{a}	$0.29 \pm 0.04^{\rm b}$	0.46 ± 0.03^{a}
35 day	α_1	0.70 ± 0.09^{a}	$0.48 \pm 0.03^{\text{ b}}$	$0.66 \pm 0.05^{\text{ a}}$	$0.43 \pm 0.02^{\text{ b}}$	0.66 ± 0.07^{a}	$0.43 \pm 0.05^{\text{ b}}$	$0.65 \pm 0.05^{\rm a}$
33 day	α_2	0.48 ± 0.05^{a}	$0.33 \pm 0.01^{\text{ b}}$	0.43 ± 0.03^{a}	$0.32 \pm 0.02^{\text{ b}}$	0.41 ± 0.02^{a}	$0.30 \pm 0.04^{\text{ b}}$	0.47 ± 0.04^{a}
42 doz.	α_1	0.63 ± 0.08^{a}	$0.41 \pm 0.05^{\text{ b}}$	$0.67 \pm 0.05^{\text{ a}}$	$0.46 \pm 0.06^{\text{ b}}$	0.65 ± 0.06^{a}	0.42 ± 0.02^{b}	0.63 ± 0.03^{a}
42 day	α_2	0.47 ± 0.07^{a}	0.32 ± 0.02^{b}	0.45 ± 0.02^{a}	$0.29 \pm 0.03^{\text{ b}}$	0.46 ± 0.05^{a}	$0.28 \pm 0.05^{\text{ b}}$	0.44 ± 0.02^{a}

Values are mean \pm S.D (n = 5). Data were compared by ANOVA, Values superscripted by the same letter are not significantly different, p>0.05

Table(7): Effect of diclazuril(1 or 2 ppm), flavomycin(75g/ton) and their combinations on the serum β -globulins (g/dl) in chicken (g/dl) in chicken.

Group				Control				
		Diclazuril		Diclazuril + Flavomycin		Flavomycin	-ve	+ve
Age		Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
21 day	β 1	0.37 ± 0.05^{a}	0.22 ± 0.02^{b}	0.39 ± 0.04^{a}	0.23 ± 0.02^{b}	0.36 ± 0.03^{a}	0.21 ± 0.03^{b}	0.39 ± 0.04^{a}
21 day	β 2	0.32 ± 0.03^{a}	0.20 ± 0.04^{b}	0.36 ± 0.01 ^a	0.24 ± 0.02^{b}	0.33 ± 0.04^{a}	0.21 ± 0.04^{b}	0.35 ± 0.03^{a}
28 day	β 1	0.35 ± 0.04^{a}	0.23 ± 0.03^{b}	0.32 ± 0.03^{a}	0.24 ± 0.01^{b}	0.31 ± 0.02 a	0.24 ± 0.02^{b}	0.33 ± 0.04^{a}
28 day	β 2	0.27 ± 0.02^{a}	0.18 ± 0.03^{b}	0.27 ± 0.06^{a}	0.17 ± 0.02^{b}	0.25 ± 0.01^{a}	0.16 ± 0.03^{b}	0.26 ± 0.04^{a}
35 day	β 1	0.36 ± 0.02^{a}	0.21 ± 0.03^{b}	0.33 ± 0.04^{a}	0.22 ± 0.09^{b}	0.34 ± 0.01^{a}	0.17 ± 0.04^{b}	0.31 ± 0.02 ^a
33 day	β 2	0.25 ± 0.02^{a}	0.13 ± 0.04^{b}	0.24 ± 0.03^{a}	0.13 ± 0.01 ^b	0.27 ± 0.02^{a}	$0.10 \pm 0.2^{\ b}$	0.23 ± 0.01 ^a
42 day	β 1	0.27 ± 0.05 a	0.15 ± 0.04^{b}	0.26 ± 0.04^{a}	0.16 ± 0.03^{b}	0.30 ± 0.07^{a}	0.13 ± 0.02^{b}	0.27 ± 0.04^{a}
42 day	β 2	$0.25 \pm 0.03^{\text{ a}}$	0.12 ± 0.03^{b}	0.23 ± 0.05 a	0.12 ± 0.02^{b}	0.27 ± 0.05^{a}	0.14 ± 0.03^{b}	0.24 ± 0.01 ^a

Values are mean \pm S.D.(n = 5). Data were compared by ANOVA, Values superscripted by the same letter are not significantly different, p>0.05.

Table (8): Effect of diclazuril(1or 2 ppm), flavomycin(75g/ton) and their combinations on the serum δ-globulins (g/dl) in chicken.

					Control			
Gro	up	Dicla	zuril	Diclazuril + Flavomycin		Flavomycin	-ve	+ve
Age		Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
21 day	δ_1	0.49 ± 0.01 ^a	0.25 ± 0.05 b	0.42 ± 0.14^{a}	0.21± 0.04 b	0.55 ± 0.18^{a}	0.22 ± 0.06^{b}	0.51 ± 0.09^{a}
	δ_2	0.23 ± 0.02 a	0.10 ± 0.01 b	0.22 ± 0.06^{a}	0.11 ± 0.02^{b}	0.19 ± 0.04 a	0.09 ± 0.04^{b}	0.20 ± 0.02^{a}
28 day	δ_1	0.47 ± 0.08 a	0.29 ± 0.04^{b}	0.49 ± 0.16^{a}	0.31 ± 0.03^{b}	0.44 ± 0.05^{a}	0.26 ± 0.03^{b}	0.44 ± 0.03^{a}
	δ 2	0.14 ± 0.02^{a}	$0.05 \pm 0.01^{\ b}$	0.15 ± 0.03^{a}	0.07 ± 0.02^{b}	0.14 ± 0.03^{a}	0.04 ± 0.01^{b}	0.17 ± 0.02^{a}
35 day	δ 1	0.43 ± 0.07^{a}	0.29 ± 0.01^{b}	0.45 ± 0.07^{a}	$0.27 \pm 0.07^{\text{ b}}$	0.39 ± 0.03^{a}	0.26 ± 0.04^{b}	0.42 ± 0.04^{a}
	δ 2	0.17 ± 0.02^{a}	0.04 ± 0.05 b	0.18 ± 0.01^{a}	0.06 ± 0.03^{b}	0.15 ± 0.01^{a}	0.06 ± 0.01^{b}	0.16 ± 0.02^{a}
42 day	δ 1	$0.65 \pm 0.07^{\text{ a}}$	$0.39 \pm 0.07^{\text{ b}}$	0.74 ± 0.15^{a}	0.40 ± 0.09^{b}	0.64 ± 0.09^{a}	$0.41 \pm 0.07^{\text{ b}}$	0.75 ± 0.17^{a}
	δ 2	$0.24 \pm 0.03^{\text{ a}}$	0.10 ± 0.03^{b}	0.22 ± 0.06^{a}	0.11 ± 0.02^{b}	0.24 ± 0.06^{a}	$0.11 \pm 0.03^{\text{ b}}$	0.27 ± 0.05^{a}

Values are mean \pm S.D.(n = 5). Data were compared by ANOVA, Values superscripted by the same letter are not significantly different, p>0.05